1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (550)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 124,18 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2 B m > 2e C m ≥ e−2 D m > e2

Câu 2 Hàm số nào sau đây không có cực trị?

Câu 3 Kết quả nào đúng?

A.R sin2xcos x= −cos2x sin x + C B. R sin2xcos x= cos2x sin x + C

C.R sin2xcos x= −sin3x

Câu 4 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

y= −1

2. D minR

y= −1

Câu 5 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường elip B Đường parabol C Đường tròn D Đường hypebol.

Câu 6 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

3 + ln 2

2 . B F(

π

4)= π

4 + ln 2

2 . C F(

π

4)= π

3 −

ln 2

2 . D F(

π

4)= π

4 −

ln 2

2 .

Câu 9 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 10 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 11 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 12 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 13 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= −cos 3x

3 . B f (x)= −3 cos 3x C f (x)= cos 3x

3 . D f (x)= 3 cos 3x

Trang 2

Câu 14 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 15 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 16 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nPvà

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 18 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

11

11

29

13.

Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 20 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 22 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 23 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 24 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A 6x + y − z − 6 = 0 B x + y − z − 3 = 0 C x − y+ z + 6 = 0 D x+ y − z + 1 = 0

Câu 27 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A −2x + y − z − 4 = 0 B −2x + y − z + 4 = 0 C 2x + y − z − 4 = 0 D −2x + y − z + 1 = 0.

Câu 28 Tính tích phân I = R2

1 xexdx

Câu 29 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

A I = 5

2.

Trang 3

Câu 30 Tìm nguyên hàm I = R xcosxdx.

A I = x2sinx

2 + C

Câu 31 ChoR3

a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (1

1

2).

Câu 32 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4

3 f(x)= 4 Tích phân R3

0 f(x) bằng

Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3).

Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B. 5

2 < |z| < 7

2. C 2 < |z| <

5

1

2 < |z| < 3

2.

Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 39 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B |z|= 1

Câu 40 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

1

√ 2

3 .

Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 43 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

A P= 2 + 2(ln a)2

Trang 4

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (1; 13; 16)

Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 46 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 47 Tính đạo hàm của hàm số y= log4

x2− 1

A y′ = x

(x2− 1) ln 4. B y

x2− 1 ln 4

2(x2− 1) ln 4. D y

(x2− 1)log4e.

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A. 1

√ 5

√ 15

√ 15

5 .

Câu 49 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

4ln 2+ 3π

1

5ln 2+ 6π

5 .

Câu 50 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:18

🧩 Sản phẩm bạn có thể quan tâm

w