Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Công thức nào sai? A ∫ cos x = sin x +C B ∫ sin x = − cos x +C C ∫ ax =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Công thức nào sai?
Câu 2 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 3 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3
Câu 4 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
C y= 3x+ 1
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(8;21
Câu 6 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3a2b
2
q
b2− √3a2
C VS.ABC = a2
√ 3b2− a2
√ 3ab2
12 .
Câu 7 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5−
1
5 ln 5 + 1 − 1
ln 5.
C y= x
5 ln 5 − 1+ 1
ln 5.
Câu 8 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
1 và d2 :
x −4
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách
từ điểm M(1; 1; 1) đến (P) bằng
3
√ 10
53
5
Câu 10 Tập nghiệm của bất phương trình 52x +3> −1 là
Câu 11 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= −2x+ 3
1+ x
x+ 2 .
Trang 2Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A P(4 ; −1 ; 3) B Q(4 ; 4 ; 2) C M(0 ; 0 ; 2) D N(1 ; 1 ; 7).
Câu 13 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 14 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 15 Tính đạo hàm của hàm số y= 5x
A y′ = 5x
′ = 5x
Câu 16 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (3;+∞)
B Hàm số đã cho đồng biến trên khoảng (−∞; 3).
C Hàm số đã cho nghịch biến trên khoảng (1; 4).
D Hàm số đã cho đồng biến trên khoảng (1; 4).
Câu 17 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z. D z là số thuần ảo.
Câu 18 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 19 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 20 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 21 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.
Câu 22 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 23 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
11
29
13.
Câu 24 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z+ z = 2bi B |z2|= |z|2 C z · z= a2− b2 D z − z= 2a
Câu 25 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Trang 3Câu 26 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
A.R f(x)dx= √ 1
R
f(x)dx= 2√2x+ 1 + C
C.R f(x)dx= 1
2
√
Câu 27 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là
A 2x + y − z − 4 = 0 B −2x + y − z + 1 = 0 C −2x + y − z + 4 = 0 D −2x + y − z − 4 = 0.
Câu 28 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x)= ex B F(x)= e2x C F(x) = ex +1. D F(x)= ex+ 1
Câu 29 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 30 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4
3 f(x)= 4 Tích phân R3
0 f(x) bằng
Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A 6x + y − z − 6 = 0 B x − y + z + 6 = 0 C x+ y − z + 1 = 0 D x+ y − z − 3 = 0
Câu 32 Tìm nguyên hàm I = R xcosxdx
A I = x2sinx
2 + C
Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 4; 4) D C(1; 0; 2).
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
3√2
2 .
Câu 35 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 36 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2
Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B Phần thực của z là số âm.
Câu 39 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 5
2 < |z| < 4 C. 1
2 < |z| < 2 D. 3
2 < |z| < 3
Trang 4Câu 40 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P =
|z|2− 22 B P = (|z| − 2)2 C P=
|z|2− 42 D P= (|z| − 4)2
Câu 42 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
2 ≤ |z| ≤ 2. B |z| <
1
1
2 < |z| < 3
2. D |z| > 2.
Câu 43 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 44 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 46 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 3a3√
3
Câu 47 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 1 thì ax > ay ⇔ x> y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax = ay
⇔ x= y D Nếu a > 0 thì ax > ay
⇔ x< y
Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 49 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 50 Biết
π 2 R
0
sin 2xdx= ea
Khi đó giá trị a là:
Trang 5HẾT