Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; 2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; −2).
Câu 2 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ∈ (0; 2) B −1 < m < 7
2. C m ∈ (−1; 2). D m ≥ 0.
Câu 3 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 4 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3a2b
√ 3b2− a2
C VS.ABC =
√ 3ab2
2
q
b2− √3a2
Câu 5 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
4 −
ln 2
2 . B F(
π
4)= π
4 + ln 2
2 . C F(
π
4)= π
3 −
ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 6 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 8 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log x > log y B log 1
a
x> log1
a
y C logax> logay D ln x > ln y.
Câu 9 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) tiếp xúc mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).
C (P) không cắt mặt cầu (S ) D (P) cắt mặt cầu (S ).
Câu 12 Tập nghiệm của bất phương trình 52x+3> −1 là
Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; −1) B.→−n = (1; 3; −2) C.→−n = (1; 2; 3) D.→−n = (1; −2; 3)
Trang 2Câu 14 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −1
3(2x+ 1)−
4
1
3 ln(2x+ 1)
C (2x+ 1)−
1
3(2x+ 1)−
4
3
Câu 15 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
A C3
Câu 16 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 17 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 18 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 19 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 21 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 22 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −21008+ 1 B −21008 C −22016 D 21008
Câu 23 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z · z+ z + z + 1 C z+ z + 1 D z2+ 2z + 1
Câu 24 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 26 Tích phânR1
0 e−x dx bằng
A. 1
1
e −1
Câu 27 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2; 1).
Câu 28 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng
(−2; 3) Tính I= R 2
−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4
Câu 29 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4
3 f(x)= 4 Tích phân R3
0 f(x) bằng
Trang 3Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; −4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(1; 4; 4).
Câu 31 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
4.
Câu 32 Giá trị củaR0
−1ex+1dxbằng
Câu 33 Hàm số f (x) thoả mãn f′(x)= xxlà:
A (x − 1)x+ C B (x+ 1)x+ C C x2+ x+1
x+ 1 + C. D x2 x+ C.
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2 B P= (|z| − 2)2 C P =
|z|2− 22 D P =
|z|2− 42
Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
1
2 < |z| < 3
2. C 2 < |z| <
5
3
2 < |z| < 2
Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 39 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2. D |z| > 2.
Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 43 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A = 2a Tính thể tích khối chóp S.ABCD
Trang 4Câu 44 Cho P= 2a
4b8c, chọn mệnh đề đúng trong các mệnh đề sau
Câu 45 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
31π
33π
5 .
Câu 47 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
2(x2− 1) ln 4. B y
(x2− 1)log4e. C y
(x2− 1) ln 4. D y
x2− 1 ln 4
Câu 48 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 49 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 50 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 25
29
23
27
4 .
Trang 5HẾT