1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề toán thi đại học có đáp án (113)

11 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề toán thi đại học có đáp án
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 11
Dung lượng 1,12 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Có bao nhiêu số nguyên dương sao cho ứng với mỗi có đúng ba số nguyên thỏa mãn Đáp án đúng: C Giải thích chi tiết: Có bao nhiêu số nguyên dương sao cho ứng với mỗi có đúng ba số nguyên t

Trang 1

ĐỀ MẪU CÓ ĐÁP ÔN TẬP KIẾN THỨC

TOÁN 12

Thời gian làm bài: 40 phút (Không kể thời gian giao đề)

-Họ tên thí sinh:

Số báo danh:

Mã Đề: 012.

Câu 1 Cho một hình lăng trụ đáy là một đa giác có 20 cạnh Hình lăng trụ đó có số đỉnh là

Đáp án đúng: C

sao cho tam giác vuông cân tại Biết mặt phẳng có véc tơ pháp tuyến Tính

Đáp án đúng: D

Điểm sao cho tam giác vuông cân tại Biết mặt phẳng có véc tơ pháp tuyến Tính

A B C D

Lời giải

Mặt cầu có tâm , bán kính

Ta có điểm thuộc mặt cầu Do đó đường tròn ngoại tiếp tam giác là đường tròn giao tuyến của mặt cầu và mặt phẳng

Tam giác vuông cân tại nên bán kính đường tròn ngoại tiếp tam giác là

Phương trình mặt phẳng có dạng

Ta có mặt phẳng qua nên ta có:

Khi đó phương trình mặt phẳng có dạng:

Trang 2

Vậy

Câu 3

Cho khối lăng trụ đứng có đáy là tam giác đều cạnh và Thế tích của khối lăng trụ đã cho bằng

Đáp án đúng: B

Câu 4 Có bao nhiêu số nguyên dương sao cho ứng với mỗi có đúng ba số nguyên thỏa mãn

Đáp án đúng: C

Giải thích chi tiết: Có bao nhiêu số nguyên dương sao cho ứng với mỗi có đúng ba số nguyên thỏa mãn

Đáp án đúng: B

Giải thích chi tiết: Điều kiện xác định:

Bất phương trình cho

So điều kiện, ta được:

Câu 6

Cho hàm số có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trong khoảng nào dưới đây?

Đáp án đúng: A

Câu 7 Cho là một nguyên hàm của hàm số trên tập và thỏa mãn Tính

Trang 3

Đáp án đúng: A

Giải thích chi tiết: Bảng khử dấu giá trị tuyệt đối:

Câu 8 Có bao nhiêu giá trị nguyên của tham số để hàm số có tập xác định

?

Đáp án đúng: D

Câu 9 Có bao nhiêu giá trị nguyên của tham số thuộc khoảng để hàm số

nghịch biến trên khoảng ?

Đáp án đúng: A

Câu 10

Cho khối chóp có đáy là hình vuông cạnh và chiều cao bằng Thể tích khối chóp đã cho bằng

Đáp án đúng: D

với là các số thực dương Giá trị của bằng

Đáp án đúng: D

Giải thích chi tiết: Gọi Điểm biểu diễn số phức

Trang 4

Theo giả thiết

(1) Tập hợp điểm biểu diễn số phức nằm trên đường elip có tiêu điểm và Mà

, với là trung điểm của

Do đó nhỏ nhất khi ; với đi qua , và có tọa độ dương Ta có

Thay vào (1) ta được

+ Với (loại)

Câu 12 Tập hợp các điểm biểu diễn số phức thỏa mãn là đường thẳng có phương trình:

Đáp án đúng: D

Giải thích chi tiết: Tập hợp các điểm biểu diễn số phức thỏa mãn là đường thẳng có phương trình:

Lời giải

Ta có

nào sau đây đúng?

A , , không đồng phẳng B vuông góc với

Đáp án đúng: C

Giải thích chi tiết: Ta có: Hai véctơ , không cùng phương

Ba véctơ , , đồng phẳng

Trang 5

Câu 14

Cho hình chóp tam giác đều Hình nón có đỉnh và có đường tròn đáy là đường tròn nội tiếp tam giác gọi là hình nón nội tiếp hình chóp hình nón có đỉnh và có đường tròn đáy là đường tròn ngoại tiếp tam giác gọi là hình nón ngoại tiếp hình chóp Tỉ số thể tích của hình nón nội tiếp và hình nón ngoại tiếp hình chóp đã cho bằng

Đáp án đúng: B

Giải thích chi tiết:

Lời giải

Hai hình nón có cùng chiều cao nên tỉ số thể tích bằng tỉ số diện tích mặt đáy Vì tam giác đều nên bán

kính đường tròn ngoại tiếp bằng đường cao của tam giác; bán kính đường tròn nội tiếp bằng đường cao của tam giác

Suy ra

Câu 15 Điểm cực tiểu của đồ thị hàm số

Đáp án đúng: D

hai giá trị cực trị là là và Diện tích hình phẳng giới hạn bởi các đường và bằng

Đáp án đúng: C

Câu 17 Hàm số đạt cực tiểu tại

Đáp án đúng: B

Câu 18

Cho hàm số có đồ thị như hình vẽ Hàm số đã cho đồng biến trên khoảng nào?

Trang 6

A B

Đáp án đúng: C

Câu 19 Hàm số nghịch biến trên khoảng nào dưới đây?

Đáp án đúng: C

Câu 20 Cho hai tập hợp A={x ∈ℝ|(2x − x2)(2 x2− 3x −2)=0}B=¿ Chọn mệnh đề đúng

A A ∩ B={5; 4}. B A ∩ B={2 ;4}.

Đáp án đúng: C

Câu 21

Cho hàm số có bảng biến thiên như sau Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số

đã cho là

Đáp án đúng: D

Câu 22 Tổng tất cả các nghiệm nguyên của bất phương trình

Đáp án đúng: C

Giải thích chi tiết: ĐK:

Trang 7

Ta có

Vì nên Vậy tổng tất cả các nghiệm nguyên của bất phương trình bằng 3

Câu 23 Cho hàm số liên tục và có đạo hàm đến cấp trên thỏa Giá trị nhỏ nhất của tích phân bằng

Đáp án đúng: A

Giải thích chi tiết:

Lời giải

Ta có

Suy ra

Nhận xét: Lời giải trên sử dụng bất đẳng thức ở bước cuối là

Câu 24 Gọi là hai nghiệm phức của phương trình Giá trị của biểu thức

bằng

Đáp án đúng: D

Giải thích chi tiết: Do là hai nghiệm phức của phương trình

Suy ra Ta có:

Câu 25 Cho khối chóp tứ giác S ABCD Mặt phẳng (SAC) chia khối chóp đã cho thành các khối nào sau đây?

A Hai khối chóp tứ giác.

B Hai khối tứ diện bằng nhau.

C Hai khối tứ diện.

Trang 8

D Một khối tứ diện và một khối chóp tứ giác.

Đáp án đúng: C

Câu 26

Gọi là diện tích hình phẳng giới hạn bởi các đường , trục hoành và hai đường thẳng ,

Đặt , , mệnh đề nào sau đây đúng?

Đáp án đúng: A

Câu 27 Cho hàm số có giá trị nhỏ nhất và lớn nhất trên đoạn là và Giá trị của tổng

bằng bao nhiêu?

Đáp án đúng: A

Đáp án đúng: B

Trang 9

Câu 29

Hàm số đồng biến trên khoảng nào dưới đây?

Đáp án đúng: A

Câu 30

Tìm nguyên hàm của hàm số

Đáp án đúng: D

Câu 31 Một người viết ngẫu nhiên một số tự nhiên có bốn chữ số Hỏi có thể lập được bao nhiêu số sao cho các

chữ số của số được viết ra có thứ tự tăng dần hoặc giảm dần ( nghĩa là nếu số được viết dưới dạng thì

Đáp án đúng: D

Giải thích chi tiết: (Chuyên KHTN - Lần 3 - Năm 2018) Một người viết ngẫu nhiên một số tự nhiên có bốn

chữ số Hỏi có thể lập được bao nhiêu số sao cho các chữ số của số được viết ra có thứ tự tăng dần hoặc giảm dần ( nghĩa là nếu số được viết dưới dạng thì hoặc )

Lời giải

Gọi số tự nhiên có chữ số mà các chữ số của số được viết ra có thứ tự tăng dần hoặc giảm dần có dạng Trường hợp 1: số tự nhiên có chữ số mà các chữ số của số được viết ra có thứ tự giảm dần

Trang 10

Vì nên các chữ số đôi một khác nhau và các chữ số , , , lấy từ tập

và với chữ số lấy ra từ thì chỉ lập được duy nhất một số thỏa yêu cầu bài toán Do

đó số số tự nhiên có chữ số mà các chữ số của số được viết ra có thứ tự tăng dần là

Trường hợp 2: số tự nhiên có chữ số mà các chữ số của số được viết ra có thứ tự tăng dần

Vì nên các chữ số đôi một khác nhau và các chữ số , , , lấy từ tập

và với chữ số lấy ra từ thì chỉ lập được duy nhất mọt số thỏa yêu cầu bài toán

Do đó số số tự nhiên có chữ số mà các chữ số của số được viết ra có thứ tự giảm dần dần là

Vậy số phần tử của biến cố là

Câu 32 Trong không gian với hệ tọa độ , cho hai điểm , Gọi là điểm sao cho

Khoảng cách từ điểm đến mặt phẳng đạt giá trị nhỏ nhất là

Đáp án đúng: B

Giải thích chi tiết: Gọi

Ta có nên

Suy ra tập hợp các điểm thỏa mãn là mặt cầu có tâm và bán kính

Do đó, khoảng cách từ điểm đến mặt phẳng đạt giá trị nhỏ nhất là

Câu 33 Tập nghiệm của phương trình: là:

Đáp án đúng: A

Giải thích chi tiết:

Vậy tập nghiệm của bất phương trình là:

Câu 34 Gọi là thể tích của khối tròn xoay thu được khi quay hình thang cong, giới hạn bởi đồ thị hàm số

, trục Ox, trục Oy và đường thẳng , xung quanh trục Ox Mệnh đề nào dưới đây đúng?

Trang 11

C D

Đáp án đúng: A

Câu 35 Cho hàm số y=2 x x− 12−1−1 Gọi d , n lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm

số Mệnh đề nào sau đây là đúng?

Đáp án đúng: C

Giải thích chi tiết: Để căn thức có nghĩa khi 2 x2−1 ≥ 0↔x∈(− ∞;− 1

√2]∪ [ 1√2;+∞ ).

Xét √2x2−1−1=0↔2x2− 1=1↔2 x2−1=1↔ x=± 1∈(− ∞;− 1

√2]∪[ 1√2;+∞ ).

Do đó tập xác định của hàm số: D=(−∞ ;− 1

√2]∪[ 1√2;+∞)¿− 1;1 \}

Ta có

Ngày đăng: 09/04/2023, 17:10

🧩 Sản phẩm bạn có thể quan tâm

w