1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Đề ôn tập toán 12 (159)

16 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán 12
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề ôn tập
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 16
Dung lượng 1,76 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Số phức bằng Đáp án đúng: A Giải thích chi tiết: Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức.. Đáp án đúng: B Giải thích chi tiết: Trong không gian , cho mặt phẳng .Vectơ nào

Trang 1

ĐỀ MẪU CÓ ĐÁP ÁN TOÁN 12

TOÁN 12

Thời gian làm bài: 40 phút (Không kể thời gian giao đề)

-Họ tên thí sinh:

Số báo danh:

Mã Đề: 059.

Câu 1 Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là

Đáp án đúng: B

Giải thích chi tiết: Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là

Lời giải

Thể tích khối cầu bán kính r = 2 là

Câu 2

Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng

Đáp án đúng: A

Giải thích chi tiết: Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng

Lời giải

Câu 3

Điểm nào ở hình vẽ bên biểu diễn số phức

Trang 2

A B C D

Đáp án đúng: C

Câu 4

Cho hình nón đỉnh có đáy là đường tròn tâm Thiết diện qua trục hình nón là một tam giác cân với cạnh đáy bằng và có diện tích là Gọi là hai điểm bất kỳ trên đường tròn Thể tích khối chóp đạt giá trị lớn nhất bằng

Đáp án đúng: C

Câu 5 Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?

Đáp án đúng: B

Giải thích chi tiết: Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?

Lời giải

Câu 6

Cho hàm số có bảng biến thiên như sau:

Khẳng định nào sau đây sai?

A Hàm số nghịch biến trên khoảng

Trang 3

B Hàm số đồng biến trên khoảng

C Hàm số đồng biến trên các khoảng

D Hàm số đồng biến trên khoảng

Đáp án đúng: D

Giải thích chi tiết: Cho hàm số có bảng biến thiên như sau:

Khẳng định nào sau đây sai?

A Hàm số đồng biến trên khoảng

B Hàm số đồng biến trên khoảng

C Hàm số đồng biến trên các khoảng

D Hàm số nghịch biến trên khoảng

Lời giải

Câu 7 Cho khối cầu có đường kính bằng Thể tích khối cầu đã cho bằng

Đáp án đúng: B

Câu 8 Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường thẳng

Điểm nào dưới đây thuộc ?

Đáp án đúng: C

Giải thích chi tiết: Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường

Lời giải

Đường thẳng có một VTCP vectơ chỉ phương là

Giả sử đường thẳng cắt đường thẳng tại

Trang 4

Vì đường thẳng vuông góc với đường thẳng nên

Phương trình đường thẳng đi qua và có vectơ chỉ phương là

Câu 9 Cho khối hộp chữ nhật ABCD A ' B ' C ' D ' Hỏi mặt phẳng ( AB' C ' D) chia khối hộp đã cho thành bao nhiêu khối lăng trụ ?

Đáp án đúng: D

Câu 10 Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng Gọi S là diện tích xung quanh của hình trụ có

hai đường tròn đáy lần lượt ngoại tiếp các hình vuông ABDC và A'B'C'D' Khi đó S bằng:

Đáp án đúng: D

Câu 11

Cho , là hai trong các số phức thỏa mãn điều kiện , đồng thời

Tập hợp các điểm biểu diễn của số phức trong mặt phẳng tọa độ là đường tròn có phương trình nào dưới đây?

Đáp án đúng: B

Giải thích chi tiết:

Trang 5

có tâm và bán kính , gọi là trung điểm của khi đó là trung

Gọi là điểm đối xứng của qua suy ra và là đường trung bình của tam giác

Vậy thuộc đường tròn tâm bán kính bằng và có phương trình

Câu 12 Biểu thức có giá trị bằng:

Đáp án đúng: D

Câu 13

Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên

Đáp án đúng: D

Giải thích chi tiết: Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên đường thẳng Khoảng cách lớn nhất giữa và bằng

Lời giải

Trang 6

Gọi , lần lượt là trung điểm , , khi đó và Chọn

hệ trục toạ độ có gốc tại , chiều dương các tia , trùng với các tia ,

và tia cùng hướng với tia

Suy ra

Dẫn đến

Phương trình trên có nghiệm khi và chỉ khi

Trang 7

Từ đó ta được giá trị lớn nhất của là

chiếu của trên Bán kính của mặt cầu ngoại tiếp hình chóp là

Đáp án đúng: A

Giải thích chi tiết:

Lời giải

Trong tam giác ta có

Do đó tam giác vuông tại (1)

Ta có

vuông tại (2) Tam giác vuông tại (3)

Từ (1), (2), (3) suy ra mặt cầu tâm bán kính ( là trung điểm của ngoại tiếp hình chóp

tọa đồ là

Đáp án đúng: D

Giải thích chi tiết: Trong không gian , hình chiếu của điểm trên đường thẳng

có tọa đồ là

Lời giải

Trang 8

Gọi là hình chiếu của điểm trên đường thẳng

; đường thẳng có véc tơ chỉ phương

Câu 16 Cho khối lăng trụ có thể tích là , đáy là tam giác vuông cân có độ dài cạnh huyền bằng

Độ dài chiều cao khối lăng trụ bằng

Đáp án đúng: A

Câu 17 Cho tích phân Đặt , khẳng định nào sau đây đúng?

Đáp án đúng: B

Giải thích chi tiết: Cho tích phân Đặt , khẳng định nào sau đây đúng?

Lời giải

Đổi cận:

Câu 18

Cho hàm số xác định trên , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Trang 9

Tìm tập hợp tất cả các giá trị thực của tham số sao cho phương trình có ba nghiệm thực phân biệt.

Đáp án đúng: C

Câu 19 Thể tích của khối nón có chiều cao bằng 6 bằng

Đáp án đúng: B

Câu 20 Cho mặt cầu có bán kính Đường kính của mặt cầu đó

Đáp án đúng: C

Câu 21 Thể tích của khối cầu có bán kính đáy bằng

Đáp án đúng: B

Câu 22 Cho hình bát diện đều cạnh a Gọi S là tổng diện tích tất cả các mặt của hình bát diện đều đó Mệnh đề

nào dưới đây đúng ?

Đáp án đúng: A

Câu 23

Cho tứ diện đều có cạnh bằng Tính bán kính mặt cầu ngoại tiếp tứ diện

Đáp án đúng: D

Câu 24 Cho Đặt , mệnh đề nào dưới đây đúng ?

Trang 10

C D

Đáp án đúng: B

Câu 25 Trong không gian với hệ tọa độ cho mặt phẳng Mặt phẳng có vectơ pháp tuyến là

Đáp án đúng: B

Đáp án đúng: A

Câu 27 inh chóp túr giác đều có tất cả bao nhiêu mặt phắng đối xứng?

Đáp án đúng: C

Tọa độ giao điểm của và là

Đáp án đúng: A

Giải thích chi tiết: Trong không gian , cho đường thẳng và mặt phẳng

Tọa độ giao điểm của và là

Lời giải

Trang 11

A B C D .

Đáp án đúng: D

Giải thích chi tiết: Theo giả thiết ta có

Thay vào ta được

phẳng đi qua điểm , song song với đường thẳng sao cho khoảng cách giữa và lớn nhất Khoảng cách từ điểm đến mặt phẳng bằng

Đáp án đúng: B

Giải thích chi tiết:

Gọi là hình chiếu của lên , là hình chiếu của lên

tơ pháp tuyến của

; là vec tơ chỉ phương của

Mặt phẳng đi qua có một vectơ pháp tuyến có phương trình

Trang 12

Câu 31 Cho hàm số liên tục và xác định trên toàn số thực sao cho thỏa mãn và

, Khi ấy giá trị của tích phân

bằng

Đáp án đúng: B

, Tiếp theo ta lựa chọn cận để lấy tích phân hai vế như sau:

Bằng phương pháp đổi biến số, ta suy ra được:

Sử dụng phương pháp từng phần, ta suy ra được: (cùng với )

Đáp án đúng: D

A .B C .D

Hướng dẫn giải

Đặt

Trang 13

Câu 33 Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:

Đáp án đúng: B

Giải thích chi tiết: Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:

Lời giải

Yêu cầu bài toán tương đương tìm để hàm số đã cho có hai cực trị

Hàmsố đã cho có hai cực trị khi vàchỉ khi phương trình có hai nghiệm phân biệt và , khi đó:

Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác

Đáp án đúng: A

Giải thích chi tiết: Trong không gian với hệ toạ độ , cho tam giác với , ,

Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác

Lời giải

Suy ra vuông tại Vậy tâm đường tròn ngoại tiếp là trung điểm của

Câu 35

Trang 14

Cho và Tính tích phân

Đáp án đúng: D

Câu 36

Cho hàm số có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất 3 nghiệm phân biệt thuộc khoảng

Đáp án đúng: B

Giải thích chi tiết: Đặt Ta có

Bảng biến thiên

Trang 15

Dựa vào bảng biến thiên ta có Vì m nguyên nên Do đó có

giá trị nguyên của m thỏa mãn đề bài.

Câu 37 Cho hai số dương và Đặt Tìm khẳng định ĐÚNG.

Đáp án đúng: B

Giải thích chi tiết: Cho hai số dương và Đặt Tìm khẳng định ĐÚNG.

Lời giải

;

Câu 38 Tính tích phân

Đáp án đúng: A

Câu 39 Cho tứ diện có hai mặt phẳng và vuông góc với nhau Biết tam giác đều cạnh , tam giác vuông cân tại Tính bán kính mặt cầu ngoại tiếp tứ diện

Đáp án đúng: B

Trang 16

Giải thích chi tiết:

Gọi là trọng tâm tam giác , là trung điểm cạnh Do và tam giác vuông cân tại nên là trục của đường tròn ngoại tiếp tam giác

Suy ra là tâm mặt cầu ngoại tiếp tứ diện và bán kính mặt cầu là:

Câu 40 Tìm tập nghiệm của phương trình: 21+ x+21−x=4

Đáp án đúng: C

Ngày đăng: 06/04/2023, 15:19

w