Số phức bằng Đáp án đúng: A Giải thích chi tiết: Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức.. Đáp án đúng: B Giải thích chi tiết: Trong không gian , cho mặt phẳng .Vectơ nào
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 059.
Câu 1 Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Đáp án đúng: B
Giải thích chi tiết: Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Lời giải
Thể tích khối cầu bán kính r = 2 là
Câu 2
Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng
Đáp án đúng: A
Giải thích chi tiết: Trên mặt phẳng tọa độ, điểm là điểm biểu diễn số phức Số phức bằng
Lời giải
Câu 3
Điểm nào ở hình vẽ bên biểu diễn số phức
Trang 2A B C D
Đáp án đúng: C
Câu 4
Cho hình nón đỉnh có đáy là đường tròn tâm Thiết diện qua trục hình nón là một tam giác cân với cạnh đáy bằng và có diện tích là Gọi là hai điểm bất kỳ trên đường tròn Thể tích khối chóp đạt giá trị lớn nhất bằng
Đáp án đúng: C
Câu 5 Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Đáp án đúng: B
Giải thích chi tiết: Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Lời giải
Câu 6
Cho hàm số có bảng biến thiên như sau:
Khẳng định nào sau đây sai?
A Hàm số nghịch biến trên khoảng
Trang 3B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số đồng biến trên khoảng
Đáp án đúng: D
Giải thích chi tiết: Cho hàm số có bảng biến thiên như sau:
Khẳng định nào sau đây sai?
A Hàm số đồng biến trên khoảng
B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số nghịch biến trên khoảng
Lời giải
Câu 7 Cho khối cầu có đường kính bằng Thể tích khối cầu đã cho bằng
Đáp án đúng: B
Câu 8 Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường thẳng
Điểm nào dưới đây thuộc ?
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , gọi là đường thẳng qua , cắt và vuông góc với đường
Lời giải
Đường thẳng có một VTCP vectơ chỉ phương là
Giả sử đường thẳng cắt đường thẳng tại
Trang 4Vì đường thẳng vuông góc với đường thẳng nên
Phương trình đường thẳng đi qua và có vectơ chỉ phương là
Câu 9 Cho khối hộp chữ nhật ABCD A ' B ' C ' D ' Hỏi mặt phẳng ( AB' C ' D) chia khối hộp đã cho thành bao nhiêu khối lăng trụ ?
Đáp án đúng: D
Câu 10 Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng Gọi S là diện tích xung quanh của hình trụ có
hai đường tròn đáy lần lượt ngoại tiếp các hình vuông ABDC và A'B'C'D' Khi đó S bằng:
Đáp án đúng: D
Câu 11
Cho , là hai trong các số phức thỏa mãn điều kiện , đồng thời
Tập hợp các điểm biểu diễn của số phức trong mặt phẳng tọa độ là đường tròn có phương trình nào dưới đây?
Đáp án đúng: B
Giải thích chi tiết:
Trang 5có tâm và bán kính , gọi là trung điểm của khi đó là trung
Gọi là điểm đối xứng của qua suy ra và là đường trung bình của tam giác
Vậy thuộc đường tròn tâm bán kính bằng và có phương trình
Câu 12 Biểu thức có giá trị bằng:
Đáp án đúng: D
Câu 13
Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên
Đáp án đúng: D
Giải thích chi tiết: Cho lăng trụ tam giác đều có tất cả các cạnh bằng Gọi là điểm di chuyển trên đường thẳng Khoảng cách lớn nhất giữa và bằng
Lời giải
Trang 6Gọi , lần lượt là trung điểm , , khi đó và Chọn
hệ trục toạ độ có gốc tại , chiều dương các tia , trùng với các tia ,
và tia cùng hướng với tia
Suy ra
Dẫn đến
Phương trình trên có nghiệm khi và chỉ khi
Trang 7Từ đó ta được giá trị lớn nhất của là
chiếu của trên Bán kính của mặt cầu ngoại tiếp hình chóp là
Đáp án đúng: A
Giải thích chi tiết:
Lời giải
Trong tam giác ta có
Do đó tam giác vuông tại (1)
Ta có
vuông tại (2) Tam giác vuông tại (3)
Từ (1), (2), (3) suy ra mặt cầu tâm bán kính ( là trung điểm của ngoại tiếp hình chóp
tọa đồ là
Đáp án đúng: D
Giải thích chi tiết: Trong không gian , hình chiếu của điểm trên đường thẳng
có tọa đồ là
Lời giải
Trang 8Gọi là hình chiếu của điểm trên đường thẳng
; đường thẳng có véc tơ chỉ phương
Câu 16 Cho khối lăng trụ có thể tích là , đáy là tam giác vuông cân có độ dài cạnh huyền bằng
Độ dài chiều cao khối lăng trụ bằng
Đáp án đúng: A
Câu 17 Cho tích phân Đặt , khẳng định nào sau đây đúng?
Đáp án đúng: B
Giải thích chi tiết: Cho tích phân Đặt , khẳng định nào sau đây đúng?
Lời giải
Đổi cận:
Câu 18
Cho hàm số xác định trên , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Trang 9Tìm tập hợp tất cả các giá trị thực của tham số sao cho phương trình có ba nghiệm thực phân biệt.
Đáp án đúng: C
Câu 19 Thể tích của khối nón có chiều cao bằng 6 bằng
Đáp án đúng: B
Câu 20 Cho mặt cầu có bán kính Đường kính của mặt cầu đó
Đáp án đúng: C
Câu 21 Thể tích của khối cầu có bán kính đáy bằng
Đáp án đúng: B
Câu 22 Cho hình bát diện đều cạnh a Gọi S là tổng diện tích tất cả các mặt của hình bát diện đều đó Mệnh đề
nào dưới đây đúng ?
Đáp án đúng: A
Câu 23
Cho tứ diện đều có cạnh bằng Tính bán kính mặt cầu ngoại tiếp tứ diện
Đáp án đúng: D
Câu 24 Cho Đặt , mệnh đề nào dưới đây đúng ?
Trang 10C D
Đáp án đúng: B
Câu 25 Trong không gian với hệ tọa độ cho mặt phẳng Mặt phẳng có vectơ pháp tuyến là
Đáp án đúng: B
Đáp án đúng: A
Câu 27 inh chóp túr giác đều có tất cả bao nhiêu mặt phắng đối xứng?
Đáp án đúng: C
Tọa độ giao điểm của và là
Đáp án đúng: A
Giải thích chi tiết: Trong không gian , cho đường thẳng và mặt phẳng
Tọa độ giao điểm của và là
Lời giải
Trang 11
A B C D .
Đáp án đúng: D
Giải thích chi tiết: Theo giả thiết ta có
Thay vào ta được
phẳng đi qua điểm , song song với đường thẳng sao cho khoảng cách giữa và lớn nhất Khoảng cách từ điểm đến mặt phẳng bằng
Đáp án đúng: B
Giải thích chi tiết:
Gọi là hình chiếu của lên , là hình chiếu của lên
tơ pháp tuyến của
; là vec tơ chỉ phương của
Mặt phẳng đi qua có một vectơ pháp tuyến có phương trình
Trang 12
Câu 31 Cho hàm số liên tục và xác định trên toàn số thực sao cho thỏa mãn và
, Khi ấy giá trị của tích phân
bằng
Đáp án đúng: B
, Tiếp theo ta lựa chọn cận để lấy tích phân hai vế như sau:
Bằng phương pháp đổi biến số, ta suy ra được:
Sử dụng phương pháp từng phần, ta suy ra được: (cùng với )
Đáp án đúng: D
A .B C .D
Hướng dẫn giải
Đặt
Trang 13Câu 33 Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:
Đáp án đúng: B
Giải thích chi tiết: Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:
Lời giải
Yêu cầu bài toán tương đương tìm để hàm số đã cho có hai cực trị
Hàmsố đã cho có hai cực trị khi vàchỉ khi phương trình có hai nghiệm phân biệt và , khi đó:
Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác
Đáp án đúng: A
Giải thích chi tiết: Trong không gian với hệ toạ độ , cho tam giác với , ,
Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác
Lời giải
Suy ra vuông tại Vậy tâm đường tròn ngoại tiếp là trung điểm của
Câu 35
Trang 14Cho và Tính tích phân
Đáp án đúng: D
Câu 36
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất 3 nghiệm phân biệt thuộc khoảng
Đáp án đúng: B
Giải thích chi tiết: Đặt Ta có
Bảng biến thiên
Trang 15Dựa vào bảng biến thiên ta có Vì m nguyên nên Do đó có
giá trị nguyên của m thỏa mãn đề bài.
Câu 37 Cho hai số dương và Đặt và Tìm khẳng định ĐÚNG.
Đáp án đúng: B
Giải thích chi tiết: Cho hai số dương và Đặt và Tìm khẳng định ĐÚNG.
Lời giải
;
Câu 38 Tính tích phân
Đáp án đúng: A
Câu 39 Cho tứ diện có hai mặt phẳng và vuông góc với nhau Biết tam giác đều cạnh , tam giác vuông cân tại Tính bán kính mặt cầu ngoại tiếp tứ diện
Đáp án đúng: B
Trang 16Giải thích chi tiết:
Gọi là trọng tâm tam giác , là trung điểm cạnh Do và tam giác vuông cân tại nên là trục của đường tròn ngoại tiếp tam giác
Suy ra là tâm mặt cầu ngoại tiếp tứ diện và bán kính mặt cầu là:
Câu 40 Tìm tập nghiệm của phương trình: 21+ x+21−x=4
Đáp án đúng: C