Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Số phức z = ( 1 + i 1 − i )2016 + ( 1 − i 1 + i )2018 bằng[.]
Trang 1Tài liệu Pdf free L A TEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 2 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016là
A −21008+ 1 B −21008 C −22016 D 21008
Câu 3 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số phức.
Câu 4 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z − z= 2a B z · z= a2− b2 C |z2|= |z|2 D z+ z = 2bi
Câu 5 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2 = 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 6 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 7 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x)dx bằng
Câu 8 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 9 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
Câu 10 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 11 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
Câu 12 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 13 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?
Câu 14 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= 5√13 B |w|= √37 C |w|= 5 D |w|= √13
Trang 2Câu 15 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 16 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 17 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= √3 B |w|= √5 C |w|= 2√2 D |w|= √2
Câu 18 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 19 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A |z| < 1
3
1
2 < |z| < 3
2. D |z| > 2.
Câu 20 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B x= 2
C (x − 1)2+ (y − 4)2 = 125 D (x − 5)2+ (y − 4)2 = 125
Câu 21 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= √2 B max |z|= 3 C max |z|= 1 D max |z|= 2
Câu 22 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 23 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= 5√2 B |z|= 50 C |z|= √33 D |z|= √10
Câu 24 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 25 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 26 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 27 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= 50 B |z|= √10 C |z|= 5√2 D |z|= √33
Câu 28 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 29 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 2 B max |z|= 3 C max |z|= 1 D max |z|= √2
Trang 3Câu 30 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
A w= 1 + √27i hoặcw= 1 − √27i B w= −√27 − i hoặcw= −√27+ i
C w= 1 + √27 hoặcw= 1 − √27 D w= √27 − i hoặcw= √27+ i
Câu 31 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol.
Câu 32 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 33 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2√13 C T = 2
√ 85
√ 97
Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là số thuần ảo B Phần thực của z là số âm.
Câu 38 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B 3 < |z| < 5 C. 5
2 < |z| < 4 D. 3
2 < |z| < 3
Câu 39 Cho hàm số y= x+ 1
3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 40 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?
A Giá trị cực tiểu của hàm số là 3.
B Hàm số có hai điểm cực trị.
C Hàm số có một điểm cực đại và một điểm cực tiểu.
D Giá trị cực đại của hàm số là 0.
Câu 41 Cho hàm số y = f (x) liên tục trên R và có đạo hàm f′
(x) = x(x + 1) Hàm số y = f (x) đồng biến trên khoảng nào trong các khoảng dưới đây?
Câu 42 Xét hàm số f (x) = −x4+ 2x2+ 3 trên đoạn [0; 2] Trong các khẳng định sau, khẳng định nào
sai?
A Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
B Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x= 0
C Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x= 1
D Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
Trang 4Câu 43 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
x
y′ y
2
+∞
−∞
2
A y= 2x − 3
x+ 1 .
Câu 44 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 45 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; −2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 46 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x)dx bằng
Câu 47 ChoR 1x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
x B F′(x)= −1
x 2 C F′(x)= ln x D F′(x)= 2
x 2
Câu 48 Phần ảo của số phức z= 2 − 3i là
Câu 49 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 50 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trang 5HẾT
... √2 B max |z|= C max |z|= D max |z|=Câu 22 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H)
Câu... 5√2 B |z|= 50 C |z|= √33 D |z|= √10
Câu 24 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có... OMM′
A S = 25
4 .
Câu 26 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá