1. Trang chủ
  2. » Tất cả

Đề ôn tập thpt qg môn toán (911)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập thpt qg môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 122,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn (2 + i)z + 2(1 + 2i) 1 + i = 7 + 8i[.]

Trang 1

Tài liệu Pdf free L A TEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 2 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực không âm Câu 3 Với mọi số phức z, ta có |z+ 1|2bằng

A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1

Câu 4 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 5 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

29

11

29

13.

Câu 6 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2 = 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 7 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= −1

3

Câu 8 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?

A.R f(x)dx= − sin x + x2

C.R f(x)dx= − sin x + x2+ C D.R f(x)dx= sin x + x2+ C

Câu 9 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 10 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn |z1|+ |z2|= 2?

Câu 11 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

Câu 12 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (2; 4; 6) B (−2; −4; −6) C (1; 2; 3) D (−1; −2; −3).

Câu 13 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A 0 < m < 3

4. B m ≥ 0. C m < 0 hoặc m >

3

4. D 0 ≤ m <

3

4.

Câu 14 Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (1 + 4i)z − 9 + 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0

C z2+ (5 − 2i)z − 9 + 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0

Trang 2

Câu 15 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= √73 B |w|= 3√5 C |w|= √5 D |w|= 5

Câu 16 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 17 Căn bậc hai của -4 trong tập số phức là.

Câu 18 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 19 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

A P =

3

√ 2

2 .

Câu 20 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 21 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|

A |z|= √10 B |z|= 50 C |z|= √33 D |z|= 5√2

Câu 22 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 23 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √2

1

4

1

2.

Câu 24 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 25 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 26 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 3 B max |z|= 7 C max |z|= 6 D max |z|= 4

Câu 27 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= 1 + √27 hoặcw= 1 − √27 B w= −√27 − i hoặcw= −√27+ i

C w= 1 + √27i hoặcw= 1 − √27i D w= √27 − i hoặcw= √27+ i

Câu 28 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Trang 3

Câu 29 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. 1

1

4

2

5.

Câu 30 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x − y+ 8 = 0 C x+ y − 5 = 0 D x+ y − 8 = 0

Câu 31 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 32 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x+ 1)2+ (y − 2)2 = 125 B (x − 1)2+ (y − 4)2= 125

Câu 33 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

3

√ 2

Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

2;

9 4

!

4

!

4;

5 4

!

Câu 37 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 1

2 < |z| < 3

2. B 2 < |z| <

5

3

2 < |z| < 2 D. 5

2 < |z| < 7

2.

Câu 39 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?

A Hàm số có hai điểm cực trị.

B Giá trị cực đại của hàm số là 0.

C Giá trị cực tiểu của hàm số là 3.

D Hàm số có một điểm cực đại và một điểm cực tiểu.

Câu 40 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam

giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?

A Khối mười hai mặt đều B Khối bát diện đều.

Trang 4

Câu 41 Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.

B Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

C Hai khối chóp có thể tích bằng nhau thì bằng nhau.

D Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.

Câu 42 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?

x

y′ y

2

+∞

−∞

2

A y= 2x − 1

2x+ 1

x −1 .

Câu 43 Xét hàm số f (x) = −x4+ 2x2+ 3 trên đoạn [0; 2] Trong các khẳng định sau, khẳng định nào

sai?

A Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x= 1

B Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.

C Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x= 0

D Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.

Câu 44 Trong các hình dưới đây, có bao nhiêu hình đa diện?

Câu 45 ChoR 1x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= −1

x 2 D F′(x)= ln x

Câu 46 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 47 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

√ 2

√ 2

Câu 48 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

Câu 49 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 50 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Trang 5

HẾT

Ngày đăng: 28/03/2023, 15:06

🧩 Sản phẩm bạn có thể quan tâm

w