- Đó chính là nội dung của - Trả lời theo đ/n định lí 3 ghi bảng - Định lí này đã được chứng Định lí 3: Đường thẳng đi qua trung minh thông qua bài toán - EF = điểm một cạnh bên của hình[r]
Trang 1Ngày soạn: 27/08/2015 Tuần: 4
LUYỆN TẬP
I Mục tiêu:
-Kiến thức : Qua luyện tập, giúp HS vận dụng thành thạo định lí đường trung bình của
hình thang để giải quyết được những bài tập từ đơn giản đến khĩ.
- Kĩ năng : Rèn luyện cho HS thêm các thao tác của tư duy như: phân tích, tổ hợp.
- Thái độ : Giáo dục ý thức thích giải bài tập
II Chuẩn bị:
GV: Bảng phụ hình 45, phấn màu , thước kẽ
HC: Xem bài trước ở nhà
III Các bước lên lớp:
1 Ổn định: KTSS
2 Kiểm tra bài cũ: (lồng ghép trong tiết dạy )
3 Bài mới:
Hoạt động 1 :Vận dụng t/c đường TB của hthang để tính độ dài cạnh.
- Vẽ hình 45 trên bảng
phụ
AB // CD // EF // GH
Tìm x, y ?
- Định nghĩa đường trung
bình của hình thang ?
- Phát biểu định lí 4 ?
- DC là đường trung bình
của hình thang nào ?
- Hình thang ABFE cĩ 2
đáy là bao nhiêu ?
- DC = ?
- Tìm y ta làm như thế
nào ?
- Cho HS trình bày ?
- Gọi nhận xét ?
- Cho điểm
- Theo dõi
- Phát biểu
- Phát biểu
- … của ABFE
AB = 8cm
EF = 16cm
DC = (AB + EF)
- Tìm 1 cạnh đáy của hình thang
- Trình bày
- Nhận xét
BT 26/SGK
Hình thang ABFE có CD là đường trung bình nên:
CD=AB+EF
2 =
8+16
2 =12
Vậy x =12 Hình thang CDHG có EF là đường trung bình nên:
EF=CD+GH
2
⇒CD+GH=2 EF
GH=2 EF− CD
¿2 16 −12=20
Vậy y = 20
Hoạt động 2: Bài tập tổng hợp
- Vẽ hình
- HD chứng minh
a/ Chứng minh AK = KC
ta dựa vào định lí 1 của
bài 4
Tương tự BI = ID cũng
vậy
b/ Tính EI và KF dựa vào
đường trung bình của tam
giác
Tính IK = EF - (EI + KF)
- Vẽ hình
- Làm theo HD của gv
BT 28/SGK
a/ Do EF là đường trung bình của
hình thang nên:
EF // AB // CD Tam giác ABC có :
BF = FC (gt)
Trang 2- Gọi 2 HS trình bày
- Gọi nhận xét ?
- cho điểm
- Trình bày
- HS nhận xét bài trên bảng.
- Nhận xét
FK // AB (do EF // AB) Tam giác ABD có :
AE = ED (gt)
EI // AB (do EF // AB)
b/ Do EF là đường trung bình của
hình thang nên:
EF=AB+CD
2 =
6+10
2 =8
Do EI là đường trung bình của
Δ ABD nên: EI=AB
2 =
6
2=3
Do KF là đường trung bình của
Δ ABC nên : KF=AB
2 =
6
2=3
Mà EI + IK + KF = EF nên KF =
EF – (EI + IK) = =8 – (3+3) = 2
Hoạt động 3 : Bài tập áp dung đường trung bình tam giác.
- Cho HS thảo luận nhĩm
HD:
b/ Chứng minh
EF
Ta chứng minh:
EF EK + KF
- Gọi đại diện trình bày ?
- Gọi nhận xét
- Thảo luận nhĩm theo
HD của gv
- Đại diện nhĩm trình bày
- Nhận xét
BT 27/SGK
a/ Tam giác ADC có :
E, K lần lượt là trung điểm của AD và AC
nên EK là đường trungbình
⇒ EK=CD
2 (1) Tam giác ADC có :
K, F lần lượt là trung điểm của AC và BC
nên KF là đường trungbình
⇒ KF=AB
2 (2) b/ Ta có : EF EK+KF
(bất đẳng thức ΔEFK ) (3) Từ (1), (2) và (3) ⇒
Trang 3EF ≤ EK+KF=CD
2 +
AB 2
¿CD +AB 2
4 Củng cố: Nhắc lại các định lí đã học ở bài 4
5 Hướng dẫn về nhà :
- Học bài và xem lại các bài tập đã giải.
-Xem bài 6
IV Rút kinh nghiệm:
………
………
………
………
………
Ngày soạn: 27/08/2015 Tuần: 4 Ngày dạy: /09/2015 Tiết: 8 Bài 4: ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG I Mục tiêu -Kiến thức :+Nắm được định nghĩa và định lí 3, 4 về đường trung bình của hình thang + Biết vận dụng các định lí về đường trung bình của hình thang để tính độ dài, chứng minh 2 đoạn thẳng bằng nhau, hai đường thẳng song song - Kỹ năng : Rèn luyện cách lập luận trong chứng minh định lí và vận dụng các định lí đã học vào các bài toán thực tế -Thái độ : Giáo dục ý thức yêu thích môn học II Chuẩn bị - GV: Thước đo góc và thước chia khoảng - HS: Xem bài trước ở nhà III Các bước lên lớp 1 Ổn định : KTSS 2 Kiểm tra bài củ
- Phát biểu định lí 2 ? - Làm bài tập: Cho hình thang ABCD (AB//CD)
Qua trung điểm E của AD kẻ đường song song với A B hai đáy, đường thẳng này cắt AC ở I, cắt BC ở F (hình bên) Chứng minh: IA = IC; FB = FC
Đ/án: Xét ADC có AE = ED (gt) E F EF//DC (gt) EI//DC I AI = IC (theo định lí 1) D C Xét ABC có AI = IC (cmt)
EF//AB (gt) FI//AB
FB = FC (theo định lí 1)
GV nhận xét cho điểm
3 Bài mới
Hoạt động 1: Đường trung bình của hình thang
- Qua chứng minh bài toán
trên, đường thẳng đi qua
trung điểm một cạnh bên của
hình thang và song song với
hai đáy thì như thế nào với
cạnh bên thứ 2 ?
- … đi qua trung điểm cạnh bên thứ 2
- Ghi bài
2 Đường trung bình của hình
thang
Trang 4- Đĩ chính là nội dung của
định lí 3 (ghi bảng)
- Định lí này đã được chứng
minh thơng qua bài tốn
trên
- EF được gọi là đường
trung bình của hình thang
Vậy đường trung bình của
hình thang là đường như thế
nào ?
- Trả lời theo đ/n
- EF =
- … song song với hai đáy và bằng nửa tổng hai đáy
- Ghi bài
Định lí 3: Đường thẳng đi qua trung
điểm một cạnh bên của hình thang
và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai
Định nghĩa: Đường trung bình của
hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang
Hoạt động 2:Tìm hiểu tính chất của đường TB của hthang.
- Cho HS đo trên hình 38
AB = ?
DC = ?
EF = ?
So sánh EF với ?
- Vậy đường trung bình của hình
thang thì như thế nào so với 2 đáy ?
- Đĩ cũng chính là nội dung của định
lí 4 (ghi bảng)
- HD chứng minh
Vẽ K là giao điểm của các đường
thẳng AF và DC
EF//CD, EF//AB
EF = DK
Chứng minh EF là đường trung bình của ADK
AF = FK, AB = CK
FBA = FCK - Chứng minh chi tiết xem SGk - Cho HS làm cá nhân ?5 HD: Chứng minh EB là đường trung bình của hình thang ADHC EB = x = ? - Theo dõi và chứng minh * EF là đường trung bình của ADK vì: E là trung điểm của AD F là trung điểm của AK * FBA = FCK vì: ^F1 = ^F2 BF = FC B^ = C^1
- Làm cá nhân Ta cĩ EB//AD//HC AB = BC EB là đường trung bình của hình thang ADHC EB = = 32 x = 40m * Định lí 4 Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy CM Vẽ K là giao điểm của các đường thẳng AF và DC * EF là đường trung bình của ADK vì: E là trung điểm của AD F là trung điểm của AK * FBA = FCK vì: ^F1 = ^F2 BF = FC B^ = C^1
Ta cĩ EB//AD//HC AB = BC EB là đường trung bình của hình thang ADHC EB = = 32 x = 40m 4 Củng cố: - Nhắc lại định lí 3, 4 ? - Làm bt 24 SGK/80 Đ/án: Khoảng cách từ trung điểm C của AB đến đường thẳng xy bằng : 12+202 =16 cm 5 Hướng dẫn về nhà : - Học bài và làm bt 23, 25, 26 SGK/80 - Tiết sau luyện tập IV Rút kinh nghiệm:
Ký duyệt tuần 4