KQ: Bài 5.a, Tìm 11 số tự nhiên nhỏ nhất liên tiếp có tổng các bình phương của chúng là một số chính phương?. Sơ lược cách giải:..[r]
Trang 1KỲ THI KHẢO SÁT ĐỘI TUYỂN CASIO Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Họ và tên: Lớp:
BÀI LÀM:
Bài 1:
Tính giá trị các biểu thức sau
a) A =
[(7 − 6 ,35):6,5+9 , 8999 .]. 1
12 , 8
(1,2: 36+11
5: 0 ,25 −1 , 8333 .) 1
1 4
:0 ,125
b) B = (1 − 1
1+2)(1− 1
1+2+3)(1 − 1
1+2+3+4) (1 − 1
1+2+3+ 1000)
K t qu :ế ả
A
B
Bài 2: a, Cho dãy số a 1 , a 2 , ,…,a 2012 Biết
n2+n¿3
¿
a n=3 n2+3 n+1
¿
n = 1, 2, , 2012
Tính tổng: C = a 1 + a 2 + a 3 + … + a 2012
Tóm tắt cách giải:
Kết quả:
b, Tìm chữ số thập phân thứ 252012 của phép chia 2331 cho 13209
Tóm tắt cách giải:
Trang 2Kết quả:
Bài 3: a, Giả sử ( 1 + x + x2 )20 = f(x) = a0 + a1x + a2x2 + + a40x40
Tính giá trị biểu thức: E = a0 + a2 + a4 + + a 40
Sơ lược cách giải:
KQ:
b, Cho biểu thức M = 1890.1911.1930.1941.1945.1969.2011 Tìm số các ước của M nhưng không chia hết cho 130
Lời
giải
tóm
tắt
KQ
Bài 4 a, Cho x1000 + y1000 = 6,912 ; x2000 + y2000 = 33,76244
Tính : x3000 + y3000
Sơ lược cách giải:
Trang 3KQ:
b, Ký hiệu [a] gọi là phần nguyên của a là số nguyên lón nhất không vượt quá a Giải phương trình: [3
√1]+[3
√2]+ +[ √3(x3− 1)] = 855
Sơ lược cách giải:
KQ:
Bài 5.a, Tìm 11 số tự nhiên nhỏ nhất liên tiếp có tổng các bình phương của chúng là
một số chính phương?
Sơ lược cách giải:
KQ:
b, Cho ba số dương a, b, c thỏa mãn: a.b.c = 1 Tính giá trị nhỏ nhất của biểu thức:
M = 2020√a+1111√b+20112011√c
Sơ lược cách giải:
Trang 4KQ:
Bài 6:
a, Cho hình thang ABCD ( AB//CD) có AB AC, AD = 3,4cm, AB = 4 cm,
BC = 5 cm Gọi E là trung điểm CD, tia AE cắt BC tại M Tính diện tích tam giác BME
Lời
giải
tóm
tắt
KQ
b,Cho tam giác ABC có AB = 14cm, AC = 35 cm v phân giác AD = 12 cm Tính à
di n tích tam giác:ệ
Lời
giải
tóm
tắt
KQ