1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Hinh 7 tuan 30 tiet 54

2 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 80,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kỹ năng: Rèn kĩ năng vận dụng tính chất trên vào việc giải bài tập: chứng minh hai tam giác bằng nhau, tính độ dài đoạn thẳng.. Thái độ : Rèn luyện tính nhanh nhẹn và tư duy khoa học cho[r]

Trang 1

Mục Tiêu :

1 Kiến thức: Củng cố tính chất ba đường trung tuyến trong tam giác.

2 Kỹ năng: Rèn kĩ năng vận dụng tính chất trên vào việc giải bài tập: chứng minh hai tam

giác bằng nhau, tính độ dài đoạn thẳng

3 Thái độ : Rèn luyện tính nhanh nhẹn và tư duy khoa học cho HS

II.

Chuẩn Bị:

1- GV: Phấn màu, giáo án, bộ thước

2- HS: Học bài và làm bài tập, đồ dùng học tập

III Phương pháp :

- Đặt và giải quyết vấn đề, vấn đáp

IV.

Tiến trình dạy học :

1 Ổn định lớp:(1’)

Kiểm tra sĩ số : 7A1 :……… 7A5 : ………

2 Kiểm tra bài cũ: (7’)

- Phát biểu tính chất ba đường trung tuyến của tam giác

- Cho AM = 12cm là đường trung tuyến của tam giác ABC, G là trọng tâm

Tính AG, GM

3 Nội dung bài mới:

HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG - TRÌNH CHIẾU Hoạt động 1: Bài 26 (13’)

GV yêu cầu một HS

vẽ hình và viết GT và KL

Hai tam giác nào chứa hai

cạnh BE và CF?

Chúng có các yếu tố

nào bằng nhau?

Hoạt động 2: Bài 28 (20’)

GV giới thiệu bài

toán và yêu cầu HS vẽ hình

và viết GT và KL bài tóan

HS chú ý theo dõi, vẽ hình, ghi GT, KL

ABE và ACF

AB = AC (gt)

A là góc chung

AE = AF (12AC12AB)

HS đọc đề bài, vẽ hình và ghi

GT, KL

Bài 26:

Chứng minh: BE = CF:

Xét ABE và ACF ta có:

AB = AC(gt)

A là góc chung

AE = AF (12AC12AB)

Do đó: ABE = ACF(c.g.c) Suy ra: BE = CF (hai cạnh tương ứng )

Bài 28:

Ngày soạn :30/03/2013 Ngày dạy :05/04/2013 Tuần : 30

Trang 2

DEI và DFI có các yếu tố

nào bằng nhau?

So sánh DIE và DIF 

Số đo của chúng?

Vì sao?

DEI là tam giác gì?

Tính cạnh IE

Áp dụng định lý nào

để tính cạnh DI?

DE = DF(gt)

 

E F  (DEF cân tại D)

IE = IF(gt)

DIE DIF 

 DIE và DIF  kề bù với nhau nên DIE DIF 90   0

Tam giác vuông

IE = EF : 2 = 5cm Định lý Pitago

HS tính rồi cho GV biết kết quả

Giải:

a) Xét DEI và DFI ta có:

DE = DF(gt)

 

E F  (DEF cân tại D)

IE = IF(gt)

Do đó: DEI = DFI (c.g.c)

b) DEI = DFI suy ra DIE DIF 

Mà DIE và DIF  kề bù với nhau nên

c) Ta có: IE = EF : 2 = 10 : 2 = 5 cm

Áp dụng định lý Pitago cho DEI ta

có :

DE2 = DI2 + EI2

DI2 = DE2 – EI2

DI2 = 132 – 52

DI2 = 169 – 25

DI2 = 144

DI = 12 cm

4 Củng Cố:

- Xen vào lúc làm bài tập.

5 H ướng dẫn về nhà : (4’)

- Về nhà xem lại các bài tập đã giải

- GV hướng dẫn HS làm bài tập 27, 29 ở nhà

6 Rút kinh nghiệm tiết dạy :

………

………

………

………

………

………

Ngày đăng: 10/07/2021, 07:57

w