1. Trang chủ
  2. » Cao đẳng - Đại học

De thi Toan HOMC nam 2013

2 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 54,48 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

GV Nguyễn Minh Sang THCS Lâm Thao –Phú Thọ Chưa đánh máy được lời giải tôi sẽ đưa lên sau.[r]

Trang 1

Hanoi Mathematical Society

Hanoi Opens Mathematics Competition 2013

Junior Section

Sunday, March 24, 2013

Important:

Answer all 15 questions.

Enter yor answers on the answer sheet provided.

For the multiple choice questions, enter only the letters ( A,B,C,D or E) corresponding to the correct answers in the answer sheet No calculators are allowed.

Multiple Choice Questions :

Q1 : Write 2013 as a sum of m prime numbers The smallest value of m is:

(A) : 2 (B) : 3 (C) : 4 (D) : 1 (E) : None of the above

Q2 : How many natural numbers n are there so that n + 2014 is a perfect square2

(A) : 1 (B) : 2 (C) : 3 (D) : 4 (E) : None of the above

Q3 : The largest integer not exceeding [(n + 1) ] - [n ], where n is a natural number,  =

2013

2014 , is :

(A) : 1 (B) : 2 (C) : 3 (D) : 4 (E) : None of the above

Q4 : Let A be an even number but not divisible by 10 The last two digits of A are :20

(A) : 46 (B) : 56 (C) : 66 (D) : 76 (E) : None of the above

Q5 : The number of integer solutions x of the equation below:

(12x1)(6x1)(4x1)(3x 1) 330 is :

(A) : 0 (B) : 1 (C) : 2 (D) : 3 (E) : None of the above

Short Questions

Q6 : Let ABC be a triangle with area 1 (cm ) Points D,E and F lie on the sides AB,BC and CA, 2

respectively Prove that :

Min{Area of ADF, area of BED, area of CEF}  1/4 (cm ).2

Q7 : Let ABC be a triangle with  A = 90,  B = 60 and BC = 1cm Draw outside of ABC three

regular triangles ABD, ACE and BCF Determine the area of DEF

Q8 : Let ABCDE be a convex pentagon Gives that SABC = SBCD = SCDE = SDEA = SEAB = 2 (

2

cm ).

Trang 2

Find the area of the pentagon.

Q9 : Solve the following system in positive numbers

2 2

1

10

x y

Q10 : Consider the set of all rectangles with a given perimeter p Find the largest value of

M = 2 2

S

Sp

Where S is denoted the area of the rectangle

Q11 : The positive numbers a,b,c,d,e are such that the following identify hold for all number x

(x a x b x c )(  )(  )x 3dx 3x e

Find the smallest value of d

Q12 : If f x( ) ax 2bx c satisfies the condition

| ( )| 1,f x   xä1,1

Prove that the equation f (x)=2 x2− 1 has two real roots.

Q13 : Solve the system of equations

1 1 1

6

3 2 5

6

x y

x y

 

  

Q14 : Solve the system of equations

1

Q15 : Denote by Q and N the set of all rational and positive integer numbers, respectively * Suppose that

ax b x

Q for every x N * Prove that there exist integers A, B , C such that

for all x N *

GV Nguyễn Minh Sang THCS Lâm Thao –Phú Thọ ( Chưa đánh máy được lời giải tôi sẽ đưa lên sau)

Ngày đăng: 06/07/2021, 17:36

w