1. Trang chủ
  2. » Luận Văn - Báo Cáo

Mô đun các đồng cấu và hàm tử mở rộng

84 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 84
Dung lượng 1,81 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

HQ va ten h9c vien: Tr§n Thi Thanh Van.. NgucYi huong din khoa h9c: TS.. Tom t�t: Lu�n van "Modun cac d6ng ciu va ham tu ma rmg" da hoan thanh mvc dich va nhi�m vv nghien cuu.. • Trinh b

Trang 2

✸✻ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❦❤➼❝❤ ❧➺ tæ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ t↕✐ ❧î♣✳

✐✐✐

Trang 4

r

TANG THONG TIN LU�N V N TH.C Si

Tend� tai: Modun cac dBng c�u va ham tr m' rqng

Nganh: D�i s6 va Iy thuy�t s6

HQ va ten h9c vien: Tr§n Thi Thanh Van

NgucYi huong din khoa h9c: TS Nguy�n Ngqc Chau

Casa dao tio: Tru·cmg D�i hqc Srr ph�m - D�i hqc la N�ng

Tom t�t: Lu�n van "Modun cac d6ng ciu va ham tu ma r(mg" da hoan thanh mvc dich va nhi�m vv nghien cuu Cv th�, lu�n van da dit duqc m>t s6 k�t qua sau:

• Tim hi�u ly thuy�t phim tru, ham tu, day n6i cac ham tu, va phep giai xi anhcua m>t modun

• Trinh bay ham tu Hom tren phim tru cac modun tren m>t vanh giao hoan c6dan vi, va khao sat cac tinh chit cua ham tu Hom

• Trinh bay ham tu ma r>ng tren phim tru cac modun, khao sat va chung minhchi ti�t cac tinh chit Cla 10, tu do neu d?C trung tien d� CUa ham tu ma r>ng

Tr kh6a: phim tru, ham tu, phep giai xi anh cua m>t modun, ham tu Hom, ham tu

ma r>ng

Xac nh�n cia giao vien hrr6'ng din N grrcri th fC hi�n d� tai

Trang 8

▼Ð ✣❺❯

✶✳ ▲þ ❞♦ ❝❤å♥ ✤➲ t➔✐

❑❤→✐ ♥✐➺♠ ♣❤↕♠ trò ✈➔ ❤➔♠ tû ❧➛♥ ✤➛✉ t✐➯♥ ✤÷ñ❝ ✤➲ ①✉➜t ❜ð✐ ❤❛✐ ♥❤➔t♦→♥ ❤å❝ ❙✳❊✐❧❡♥❜❡r❣ ✈➔ ❙✳▼❛❝ ▲❛♥❡ ✈➔♦ ♥❤ú♥❣ ♥➠♠ ✶✾✹✵✲✶✾✹✺✱ ✤➣ ❝❤ù♥❣

tä sü ❤ú✉ ➼❝❤ tr♦♥❣ ♥❤✐➲✉ ♥❣➔♥❤ ❦❤♦❛ ❤å❝✱ ✤ç♥❣ t❤í✐ t❤✉ ❤ót sü q✉❛♥ t➙♠

❝õ❛ ♥❤ú♥❣ ♥❤➔ t♦→♥ ❤å❝ ♥ê✐ t✐➳♥❣ tr➯♥ t❤➳ ❣✐î✐✳ ❍✐➺♥ ♥❛②✱ ❧þ t❤✉②➳t ♣❤↕♠trò ✤➣ trð t❤➔♥❤ ♠ët ♥❣➔♥❤ t♦→♥ ❤å❝ ❦❤→ q✉❛♥ trå♥❣ ✈➔ ❤✐➺♥ ❤ú✉ tr♦♥❣

♥❤✐➲✉ ❧➽♥❤ ✈ü❝ ❝õ❛ t♦→♥ ❤å❝✳ ❚✐➳♣ ♥è✐ sü ♣❤→t tr✐➸♥ ❝õ❛ ❧þ t❤✉②➳t ♣❤↕♠ trò

❧➔ ✤↕✐ sè ✤ç♥❣ ✤✐➲✉✱ ♠➔ ❜è♥ trö ❝ët ❝õ❛ ♥â ❧➔ ❝→❝ ❤➔♠ tû ⊗✱ ❍♦♠✱ ❚♦r ✈➔

❊①t✳ ❍➔♠ tû ①♦➢♥ Torn ✤÷ñ❝ ❍✳ ❈❛rt❛♥ ✤➲ ①✉➜t ♥➠♠ ✶✾✹✽✱ ❝á♥ ❤➔♠ tû ♠ðrë♥❣ Extn ✤÷ñ❝ ❣✐î✐ t❤✐➺✉ ❜ð✐ ❙✳ ❊✐❧❡♥❜❡r❣ ✈➔ ❙✳ ▼❛❝ ▲❛♥❡ ✈➔♦ ♥➠♠ ✶✾✹✷✳

Trang 11

❈❍×❒◆● ✶

▼➷✣❯◆

◆❤➡♠ ❧➔♠ ❝ì sð ❝❤♦ ❝→❝ ❝❤÷ì♥❣ s❛✉✱ ❝❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥t❤ù❝ ❝ì ❜↔♥ ✈➲ ♠æ✤✉♥✱ ❝→❝ ❝❤✐ t✐➳t ❧✐➯♥ q✉❛♥ ❝â t❤➸ ①❡♠ tr♦♥❣ ❬✸❪✱ ❬✻❪✳

✶✳✶ ▼æ✤✉♥✱ ✤ç♥❣ ❝➜✉ ♠æ✤✉♥

✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✶✳ ❈❤♦ R ❧➔ ♠ët ✈➔♥❤ ❝â ✤ì♥ ✈à 1 6= 0 ✈➔ M ❧➔ ♠ët ♥❤â♠

❝ë♥❣ ❆❜❡❧✳ ❚❛ ❣å✐ M ❧➔ ♠ët ❘ ✕ ♠æ✤✉♥ tr→✐ ♥➳✉ tç♥ t↕✐ ♠ët →♥❤ ①↕✿

R × M → M(a, x) 7→ ax

Trang 12

◆➳✉ hSi = M ✈➔ S ❤ú✉ ❤↕♥ t❤➻ M ❣å✐ ❧➔ ♠æ✤✉♥ ❤ú✉ ❤↕♥ s✐♥❤✳

Trang 13

✣➦❝ ❜✐➺t✿

◆➳✉ S = ∅ t❤➻ h∅i = {0}✳

◆➳✉ S 6= ∅ t❤➻ hSi =

P

Trang 15

✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✷✳ ❈❤♦ ♠ët ❤å ❝→❝ ♠æ✤✉♥ {Mi}i∈I✳ ❳➨t t➟♣ ❝♦♥ S ❝õ❛Q

Trang 18

0 → Hom(C, X)→ Hom(B, X)g∗ → Hom(A, X) → 0f∗

✈î✐ f∗ = Hom(f, i) ✈➔ g∗ = Hom(g, i) ❝ô♥❣ ❧➔ ♠ët ❞➣② ❦❤î♣ ♥❣➢♥✳

✶✶

Trang 21

▼➺♥❤ ✤➲ ✶✳✹✳✶✺✳ ▼ët ❞➣② ♥û❛ ❦❤î♣ ♥❤ú♥❣ ✤ç♥❣ ❝➜✉ ❝õ❛ ♥❤ú♥❣ ♠æ✤✉♥tr➯♥ R ❧➔ ❦❤î♣ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ t➜t ❝↔ ❝→❝ ♠æ✤✉♥ ❞➝♥ ①✉➜t ❝õ❛ ♥â ✤➲✉ t➛♠t❤÷í♥❣✳

Trang 27

♥➯♥ t❛ ❝â g∗(β) = α ✈➔ ❞♦ ✤â α ∈ Im(g∗)✳ ❱➻ α ❧➔ ♠ët ♣❤➛♥ tû ❜➜t ❦ý ❝õ❛

Ker(∂)✱ ♥➯♥ t❛ ✤÷ñ❝ Ker(∂) ⊂ Im(g∗) ❱➟② t❛ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ✤÷ñ❝ ✭✶✮✳

✣➸ ❝❤ù♥❣ ♠✐♥❤ ✭✷✮✱ t❛ ✤➸ þ tî✐ ♣❤➛♥ s❛✉

Hn(E) −→ H∂ n−1(C) f∗

−→ Hn−1(D)

✷✵

Trang 28

h : Hom(A, B) → Hom(A′, B′)

✷✶

Trang 30

0 → Hom(C, M )−g∗→ Hom(B, M )−→ Hom(A, M )f∗

✈î✐ f ∗ = Hom(f, idM) ✈➔ g∗ = Hom(g, idM)✱ tr♦♥❣ ✤â idM ❧➔ tü ✤ç♥❣ ❝➜✉

✤ç♥❣ ♥❤➜t ❝õ❛ ♠æ✤✉♥ M✱ ❝ô♥❣ ❧➔ ❦❤î♣✳

✣à♥❤ ❧þ ✶✳✺✳✶✵✳ ◆➳✉ ❞➣② s❛✉ ♥❤ú♥❣ ✤ç♥❣ ❝➜✉ ❝õ❛ ♥❤ú♥❣ ♠æ✤✉♥ tr➯♥ R

0 → A −→ Bf −→ C → 0g

❧➔ ♠ët ❞➣② ❦❤î♣ ♥❣➢♥ ❝❤➫ r❛✱ t❤➻ ❞➣②

0 → Hom(C, M )−g∗→ Hom(B, M )−→ Hom(A, M ) → 0f∗ ✱

tr♦♥❣ ✤â f ∗ = Hom(f, idM) ✈➔ g∗ = Hom(g, idM)✱ ✈î✐ idM ❧➔ tü ✤ç♥❣ ❝➜✉

Trang 33

✶✮ ▼é✐ ✈➟t ❝õ❛ ♣❤❛♠ trò C ❧➔ ♠ët ✈➟t ❝õ❛ ♣❤↕♠ trò P✳

✷✮ ▼é✐ ①↕ ❝õ❛ ♣❤❛♠ trò C ❧➔ ♠ët ①↕ ❝õ❛ ♣❤↕♠ trò P✳

✷✻

Trang 34

✸✮ ❍ñ♣ t❤➔♥❤ ❣❢ ❝õ❛ ❝→❝ ①↕ ❣✱ ❢ tr♦♥❣ ♣❤↕♠ trò C trò♥❣ ✈î✐ ❤ñ♣ t❤➔♥❤ ❝õ❛

❝→❝ ①↕ ✤â tr♦♥❣ ♣❤↕♠ trò P✳

✣à♥❤ ♥❣❤➽❛ ✷✳✶✳✺✳

✶✮ ▼ët ①↕ f : A → B tr♦♥❣ ♠ët ♣❤↕♠ trò P ❣å✐ ❧➔ ❦❤↔ ♥❣❤à❝❤ ❤❛② ✤➥♥❣ ①↕tr♦♥❣ P ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ tç♥ t↕✐ ♠ët ①↕ g : B → A ❝õ❛ P s❛♦ ❝❤♦ t❛ ❝â ✤ç♥❣t❤í✐✿ gf = 1A ✈➔ f g = 1B✳

Trang 36

(A ⊗ −) (1B) = 1A⊗ 1B = 1A⊗B = 1(A⊗−)(B)(A ⊗ −) (gf ) = 1A⊗(gf ) = (1A ⊗ g) (1A ⊗ f ) = [(A ⊗ −) (g)] [(A ⊗ −) (f )]

❍➔♠ tû (A ⊗ −) ❣å✐ ❧➔ ❤➔♠ tû t➼❝❤ t❡♥①ì t❤❡♦ ❜✐➳♥ t❤ù ❤❛✐✳

✷✾

Trang 39

✣➸ ❝❤♦ ❣å♥✱ tø ✤➙② ✈➲ s❛✉ ❦❤✐ ❝❤♦ ♠ët ❤➔♠ tû ♠➔ ❦❤æ♥❣ ♥â✐ ❣➻ t❤➯♠t❤➻ ❤➔♠ tû ✤â ✤÷ñ❝ ❤✐➸✉ ❧➔ ❤➔♠ tû ❤✐➺♣ ❜✐➳♥✳

❚❤➟t ✈➟②✿ δ(1(A,A′ )) = δ(1A, 1A ′) = 1A × 1A ′ = 1(A×A′ ) = 1δ(A,A′ )

✸✷

Trang 43

✐✮ ❉➣② s❛✉ ❧➔ ❦❤î♣

0 → Φ◦(W ) → → Φn(W ) Φ

n (g)

−−−→ Φn(V ) Φ

n (f )

Hom(X, −)(1A) = Hom(1X, 1A) = 1Hom(X,A)

Hom(X, −)(f g) = Hom(1X, f g) = Hom(1X, f )Hom(1X, g)

= [Hom(1X, −)(f )] [Hom(1X, −)(g)]

✸✻

Trang 44

❱➻ Hom(1M, f g)Hom(1M, f ) = Hom(1M, gf ) = Hom(1M, 0) = 0.

◆➯♥ t❛ ❝â Im Hom(1M, f ) ⊆ Ker Hom(1M, g)

◆❣÷ñ❝ ❧↕✐✱ ❣✐↔ sû v ∈ Hom(M, N ) ✈➔ v ∈ KerHom(1M, g)

❑❤✐ ✤â Hom(1M, g)(v) = gv = 0✱ ✈➟② Imv ⊆ Kerg = Imf

✸✼

Trang 46

⇒ f∗(v) = Hom(f, 1X)(v) = vf = 0

❱➟② ∀m′ ∈ M′, vf (m′) = 0 ❤❛② v(Imf ) = 0

❱➻ Imf = Kerg ⇒ v(Kerg) = 0 ❤❛② Kerg ⊆ Kerv✳

❱➻ g ❧➔ t♦➔♥ →♥❤ ♥➯♥ tç♥ t↕✐ ❞✉② ♥❤➜t ♠ët ✤ç♥❣ ❝➜✉ w : M′′ → N s❛♦ ❝❤♦t❛ ❝â✿ v = wg = Hom(g, 1N)(w)

⇒ v ∈ Img∗ ⇒ Kerf∗ ⊆ Img∗

0 → Hom(X, E) → Hom(X, F ) → Hom(X, G) → 0

0 → Hom(G, X) → Hom(F, X) → Hom(E, X) → 0

0 → Hom(Zm,Z) → Hom(Zm,Z) → Hom(Zm,Zm) → 0

Trang 50

tr♦♥❣ ✤â F1 ❧➔ ♠ët ♠æ✤✉♥ tü ❞♦ tr➯♥ R✳ ❇➡♥❣ ♣❤➨♣ q✉② ♥↕♣ t♦→♥ ❤å❝✱ t❛t❤✉ ✤÷ñ❝ ❝→❝ ❞➣② ❦❤î♣ ♥❣➢♥

Trang 55

①➙② ❞ü♥❣ ♥❤÷ tr➯♥ ❧➔ ♥❤ú♥❣ t÷ì♥❣ ✤÷ì♥❣ ❞➙② ❝❤✉②➲♥ ✈➔ ❝→❝ ♣❤➨♣ ❣✐↔✐ ①↕

↔♥❤ C ✈➔ D ❝õ❛ ♠æ✤✉♥ ✤➣ ❝❤♦ X tr➯♥ R ❣å✐ ❧➔ t÷ì♥❣ ✤÷ì♥❣ ✤ç♥❣ ❧✉➙♥ ❤❛②t❤✉ë❝ ❝ò♥❣ ♠ët ❦✐➸✉ ✤ç♥❣ ❧✉➙♥✳

Trang 56

♥➯♥Hom(C, Y )❧➔ ♥û❛ ❦❤î♣ ✈➔ ❞♦ ✤â ♥â ❧➔ ♠ët ❞➣② tr➯♥✳ ❱î✐ ♠å✐ sè ♥❣✉②➯♥

Hom(f, i) = {Hom(fn, i) : Hom(Dn, Y ) −→ Hom(Cn, Y ) | n ∈ Z }

Hom(g, i) = {Hom(gn, i) : Hom(Cn, Y ) −→ Hom(Dn, Y ) | n ∈ Z }

❧➔ ♥❤ú♥❣ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ❞➙② ❝❤✉②➲♥ ❝õ❛ ❝→❝ ❞➣② tr➯♥Hom(C, Y )✈➔Hom(D, Y )✳

❈❤ù♥❣ ❝↔♠ s✐♥❤ r❛ ❝→❝ ✤ç♥❣ ❝➜✉

f∗ : Hn[Hom(D, Y )] −→ Hn[Hom(C, Y )]

✹✾

Trang 57

g∗ : Hn[Hom(C, Y )] −→ Hn[Hom(D, Y )]

✈î✐ ♠å✐ sè ♥❣✉②➯♥ n✳

❱➻ g◦f ✈➔ f◦g ✤ç♥❣ ❧✉➙♥ ✈î✐ ❝→ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ❞➙② ❝❤✉②➲♥ ✤ç♥❣ ♥❤➜t ❝õ❛

❝→❝ ❞➣② ❞÷î✐ C ✈➔ D✳ ◆➯♥ t❛ s✉② r❛ Hom(g, i)◦Hom(f, i) ✈➔

Hom(f, i)◦Hom(g, i) ❝ô♥❣ ❧➔ ✤ç♥❣ ❧✉➙♥ ✈î✐ ❝→❝ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ❞➙② ❝❤✉②➲♥

✤ç♥❣ ♥❤➜t ❝õ❛ ❝→❝ ❞➣② tr➯♥ Hom(D, Y ) ✈➔ Hom(C, Y )✳ ❑❤✐ ✤â t❛ ✤÷ñ❝

Trang 59

▼➺♥❤ ✤➲ ✸✳✷✳✻✳ ❬✸❪ ◆➳✉ ♠æ✤✉♥ X ❝â ♠ët ♣❤➨♣ ❣✐↔✐ ①↕ ↔♥❤ C s❛♦ ❝❤♦

Cn = 0 , ∀n > m t❤➻ t❛ ❝â

Extn(X, Y ) = 0

✈î✐ ♠å✐ n > m ✈➔ ♠å✐ ♠æ✤✉♥ Y tr➯♥ R✳ ❍ì♥ ♥ú❛✱ t❛ ❝â

Extm(X, Y ) ≈ Coker[Hom(∂m, i)]

tr♦♥❣ ✤â Hom(∂m, i) : Hom(Cm−1, Y ) −→ Hom(Cm, Y ) ❧➔ ❍♦♠ ❝õ❛ ✤ç♥❣

❝➜✉ ∂m : Cm −→ Cm−1 tr♦♥❣ C ✈➔ tü ✤ç♥❣ ❝➜✉ ✤ç♥❣ ♥❤➜t i : Y → Y ❝õ❛

♠æ✤✉♥ Y✳

❈❤ù♥❣ ♠✐♥❤✿

❱➻ Hom(Cm, Y ) = 0 ✈î✐ ♠å✐ n > m ♥➯♥ Extn(X, Y ) = 0✳

❍ì♥ ♥ú❛✱ ✈➻ Ker[Hom(∂m+1, i)] = [Hom(Cm, Y )]✱ ♥➯♥ t❛ ❝â

Extm(X, Y ) = Ker[Hom(∂m+1, i)] / Im[Hom(∂m, i)] ≈ Coker[Hom(∂m, i)]

Trang 60

❱➟② t❛ ✤÷ñ❝ ♣❤➨♣ ❣✐↔✐ ①↕ ↔♥❤ C∗ ❜➡♥❣ ❝→❝❤ ❧➜②

✺✸

Trang 61

Extn(X, Y ) = Ker[Hom(∂n∗, i)] / Im[Hom(∂n−1∗ , i)]

= Ker[Hom(∂n−1, i)] / Im[Hom(∂n−2, i)]

Trang 62

= Ker[Hom(∂1, i)] / Im[Hom(∂1∗, i)]

= Im[Hom(∂◦, i)] / Im[Hom(∂1∗, i)]

0 −→ Hom(X, Y ) −−−−−→ Hom(CHom(∂0,i) 0, Y )−−−−−→ Hom(CHom(∂1,i) 1, Y )

❝ô♥❣ ❦❤î♣✱ ❞♦ ✤â Hom(∂◦, i) ❧➔ ✤ì♥ ❝➜✉ ✈➔

Im[Hom(∂◦, i)] = Ker[Hom(∂1, i)]

❱➻ ✈➟② t❛ ✤÷ñ❝

H◦[Hom(C, Y )] = Ker[Hom(∂1, i)] / {0}

= Im[Hom(∂◦, i)] / {0} ≈ Hom(X, Y )

❇ê ✤➲ ✤➣ ✤÷ñ❝ ❝❤ù♥❣ ♠✐♥❤✳

✺✺

Trang 63

Hom(C′, Y′)✳ ❉♦ ✤â Hom(f, k) ❝↔♠ ù♥❣ r❛ ♠ët ✤ç♥❣ ❝➜✉

Hom(f, k)∗n : Extn(X, Y ) −→ Extn(X′, Y′) , ∀n > 0

❚❤❡♦ ▼➺♥❤ ✤➲ ✸✳✶✳✺✱ t❛ t❤➜② r➡♥❣ Hom(f, k)∗n ❦❤æ♥❣ ♣❤ö t❤✉ë❝ ✈➔♦ sü

❧ü❛ ❝❤å♥ ❝õ❛ ♣❤➨♣ ❜✐➳♥ ✤ê✐ ❞➙② ❝❤✉②➲♥ f : C′ → C ✈➔ ✤÷ñ❝ ❤♦➔♥ t♦➔♥ ①→❝

✤à♥❤ ❜ð✐ sè ♥❣✉②➯♥ n ✈➔ ❝→❝ ✤ç♥❣ ❝➜✉ h, k✳ ✣ç♥❣ ❝➜✉ ♥➔② ❣å✐ ❧➔ t➼❝❤ ♠ðrë♥❣ n ❝❤✐➲✉ tr➯♥ R ❝õ❛ ❝→❝ ✤ç♥❣ ❝➜✉ h✱ k ✈➔ ✤÷ñ❝ ❦þ ❤✐➺✉ ❧➔

Extn(h, k) : Extn(X, Y ) −→ Extn(X′, Y′)

✺✻

Trang 65

−−−−−−−−→ Hn[Hom(C, V )] H

n [Hom(i,g)]

Trang 66

−→ Extn(W, Y ) −−→ Extg∗ n(V, Y ) −−→ Extf∗ n(U, Y ) −→ Extδ n+1(W, Y ) −→

tr♦♥❣ ✤â f∗ = Extn(f, i) , g∗ = Extn(g, i) ✈➔ δ ❧➔ ✤ç♥❣ ❝➜✉ ♥è✐✳ ❉➣② ♥➔②

Trang 67

❚❤❡♦ ✣à♥❤ ❧þ ✸✳✷✳✶✸✱ t❛ ❝â ♠ët ❞➣② ❦❤î♣✿

−→ Extn(W, Y ) ξ

n (g)

−−−→ Extn(V, Y ) ξ

n (f )

−−−−→ Extn(U, Y )−−→δ

δ

−−→ Ext(W, Y ) −→

tr♦♥❣ ✤â ξn(f ) = Extn(f, i) , ξn(g) = Extn(g, i)✱ ✈➔ ❞➣② ♥➔② ❜➢t ✤➛✉ ❧➔

0 −→ Hom(W, Y ) −−−−−−→ Hom(V, Y )Hom(g,i) −−−−−−→ Hom(U, Y )Hom(f,i) −−→δ

Trang 68

h ◦ (A)

δ //φ1(Y ) ξ

1 (g) //φ1(F ) = 0

ξ◦(F ) ξ◦(f )//ξ◦(A) δ //ξ1(Y ) ξ

1 (g) //ξ1(F ) = 0

Trang 69

n (g) // 0

0ξn−1(f )// ξn−1(A) δ //ξn(Y ) ξ

n (g) // 0

Trang 72

h n (Z)

φn(Y )

h n (Y )

ξn−1(A′) δ //ξn(Z) ξ

n (α) //ξn(Y )

Ngày đăng: 26/04/2021, 15:25

TỪ KHÓA LIÊN QUAN

w