[r]
Trang 11/> y:= 2*sin(x)+cos(2*x);
:=
y 2sin x( ) cos 2 x( )
> y1:=diff(y,x);
:=
y1 2cos x( ) 2sin 2 x( )
> y2:=solve(y1=0,{x});
:=
2 {x 1 }
2 {x 1 }
6 {x 5 }
6 2/> y:= (1/3*(sin(x)^3)-(cos(x))^2);
:=
3sin x( )
3 cos x( )2
> y1:=diff(y,x);
:=
y1 sin x( )2cos x( ) 2cos x( )sin x( )
> y2:=solve(y1=0,{x});
{x 0 } {x 1 },
2 {x 1 }
2 3/ > y:=
(1/3*(cos(x)^3)+(sin(x))^2);
:=
3cos x( )3 sin x( )2
> y1:=diff(y,x);
:=
y1 cos x( )2sin x( ) 2cos x( )sin x( )
> y2:=solve(y1=0,{x});
{x 0 } {x 1 }
2 {x 1 }
2 4/ > y:=
(1/3*(cos(x)^4)+(sin(x))^4);
:=
3cos x( )
4 sin x( )4
> y1:=diff(y,x);
:=
3cos x( )3sin x( ) 4sin x( )3cos x( )
> y2:=solve(y1=0,{x});
{x 0 } {x 1 }
2 {x 1 }
2 {x 1 },
6 {x 1 }
6
5/> y:= (1/3*(cos(x)^4)-(sin(x))^4);
3cos x( )
4 sin x( )4
> y1:=diff(y,x);
:=
3cos x( )3sin x( ) 4sin x( )3cos x( )
> y2:=solve(y1=0,{x});
{x 0 } {x 1 }
2 {x 1 }
2
6/ > y:= (cos(x)^4)-(sin(x))^4;
:=
y cos x( )4 sin x( )4
> y1:=diff(y,x);
:=
y1 4cos x( )3sin x( ) 4sin x( )3cos x( )
> y2:=solve(y1=0,{x});
y2 := {x 0 },{x 1 },
2 {x 1 }
2
7/ > y:= (cos(x)^6)+(sin(x))^6;
:=
y cos x( )6 sin x( )6
> y1:=diff(y,x);
:=
y1 6cos x( )5sin x( ) 6sin x( )5cos x( )
> y2:=solve(y1=0,{x});
{x 0 } {x 1 }
2 {x 1 }
2 ,
{x 1 }
4 {x 1 }
4
8/ > y:= 3*sin(x)+sin(3*x);
:=
y 3sin x( ) sin 3 x( )
> y1:=diff(y,x);
:=
y1 3cos x( ) 3cos 3 x( )
> y2:=solve(y1=0,{x});
:=
2 {x 1 }
4 {x 3 }
4
9/ > y:= 3*sin(x)-sin(3*x);
:=
y 3sin x( ) sin 3 x( )
> y1:=diff(y,x);
:=
y1 3cos x( ) 3cos 3 x( )
> y2:=solve(y1=0,{x});
:=
2 {x 0 } {x }
Trang 210/ > y:= sin(2*x)/(2+cos(2*x));
:=
y 2 sin 2 x cos 2 x( ( ) )
> y1:=diff(y,x);
:=
y1 2 cos 2 x( )
2 cos 2 x( )
2sin 2 x( )2 (2 cos 2 x( ))2
> y2:=simplify(y1);
:=
y2 2 2cos 2 x( ) 1
4 4cos 2 x( ) cos 2 x( )2
> y3:=solve(y2=0,{x});
:=
3
11/ > y:= cos(2*x)/(2+sin(2*x));
:=
y 2 cos 2 x sin 2 x( ( ) )
> y1:=diff(y,x);
:=
y1 2 2 sin 2 x sin 2 x( ( ) )
2cos 2 x( )2
(2 sin 2 x( ))2
> y2:=simplify(y1);
:=
y2 2 2sin 2 x( ) 1
5 4sin 2 x( ) cos 2 x( )2
> y3:=solve(y2=0,{x});
:=
y3 {x 1 },
12 {x 5 }
12
12/ > y:=sqrt(
cos(1*x))+sqrt(sin(x));
:=
y cos x( ) sin x( )
> y1:=diff(y,x);
:=
2
( )
sin x
( )
cos x
1
2cos x( ) ( )
sin x
> y2:=simplify(y1);
:=
2
sin x( )(3 2/ ) cos x( )(3 2/ )
( )
cos x sin x( )
> y3:=solve(y2=0,{x});
:=
y3 {x 1 },
4 {x 3 }
4
13/ > y:=(sin(x))^2 + 3*cos(2*x);
:=
y sin x( )2 3cos 2 x( )
> y1:=diff(y,x);
:=
y1 2sin x( )cos x( ) 6sin 2 x( )
> y2:=simplify(y1);
:=
y2 10sin x( )cos x( )
> y3:=solve(y2=0,{x});
:=
y3 {x 1 },
2 {x 0 }
14/ > y:=e^(x)*sin(x);
:=
y e x sin x( )
> y1:=diff(y,x);
:=
y1 e x ln e( )sin x( ) e x cos x( )
> y2:=simplify(y1);
:=
y2 e x (ln e( )sin x( ) cos x( ))
> y3:=solve(y2=0,{x});
:=
arctan 1
( )
ln e
15/ > y:=e^(x)*cos(x);
:=
y e x cos x( )
> y1:=diff(y,x);
:=
y1 e x ln e( )cos x( ) e x sin x( )
> y2:=simplify(y1);
:=
y2 e x (ln e( )cos x( ) sin x( ))
> y3:=solve(y2=0,{x});
:=
y3 {x arctan(ln e( ))}
16/ > y:=e^(x)*(x-1);
:=
y e x(x 1 )
> y1:=diff(y,x);
:=
y1 e x ln e (( ) x 1 ) e x
> y2:=simplify(y1);
:=
y2 e x ln e x e( ) x ln e( ) e x
> y3:=solve(y2=0,{x});
:=
y3 {x ln e( ) 1}
( )
ln e
Trang 317/ > y:=(x)*e^(1-x);
:=
y x e(1 x )
> y1:=diff(y,x);
:=
y1 e(1 x ) x e(1 x )ln e( )
> y2:=simplify(y1);
:=
y2 e(1 x ) x e(1 x )ln e( )
> y3:=solve(y2=0,{x});
:=
( )
ln e
18/ > y:=(x)*e^(x-1);
:=
y x e(x 1)
> y1:=diff(y,x);
:=
y1 e(x 1) x e(x 1)ln e( )
> y2:=simplify(y1);
:=
y2 e(x 1) x e(x 1)ln e( )
> y3:=solve(y2=0,{x});
:=
( )
ln e
19/ > y:=(x)^2*e^(x^2);
:=
y x2e(x2)
> y1:=diff(y,x);
:=
y1 2 x e(x2) 2 x3e(x2)ln e( )
> y2:=simplify(y1);
:=
y2 2 x e(x2) 2 x3e(x2)ln e( )
> y3:=solve(y2=0,{x});
:=
y3 {x 0 },{x 1 },
( )ln e {x 1 }
( )ln e
20/ > y:=(x)^2*e^(x^2-1);
:=
y x2e(x2 1 )
> y1:=diff(y,x);
:=
y1 2 x e(x2 1 ) 2 x3e(x2 1 )ln e( )
> y2:=solve(y1=0,{x});
:=
y2 {x 0 },{x 1 },
( )ln e {x 1 }
( )ln e
21/ > y:=(x)^2*e^(x);
:=
y x2e x
> y1:=diff(y,x);
:=
y1 2 x e x x2e x ln e( )
> y2:=solve(y1=0,{x});
:=
y2 {x 0 },{x 2 1 }
( )
ln e
22/ > y:=(x)^2*e^(x-1);
:=
y x2e(x 1)
> y1:=diff(y,x);
:=
y1 2 x e(x 1) x2e(x 1)ln e( )
> y2:=solve(y1=0,{x});
:=
y2 {x 0 },{x 2 1 }
( )
ln e
23/ > y:=(x)*e^(sqrt(x));
:=
y x e( x)
> y1:=diff(y,x);
:=
y1 e( x) 1
2 x e
( x)
( )
ln e
> y2:=solve(y1=0,{x});
:=
( )
ln e 2
24/ > y:=(sqrt(4+x))+(sqrt(4-x));
:=
y 4 x 4 x
> y1:=diff(y,x);
:=
2
1
4 x
1 2
1
4 x
> y2:=solve(y1=0,{x});
:=
y2 {x 0 }
25 / > y:=(sqrt(4+x^2))-(sqrt(x^2));
:=
y 4 x 2 x2
> y1:=diff(y,x);
:=
4 x2
x
x2
> y2:=solve(y1 =0,{x});
x = 0
Trang 426/ > y:=(sqrt(4-x^2))+(sqrt(x^2));
:=
y 4 x 2 x2
> y1:=diff(y,x);
:=
4 x2
x
x2
> y2:=solve(y1 =0,{x});
:=
y2 {x 2},{x 2}
x = 0
27/ > restart:
> y:= x+(sqrt(2-x^2));
:=
y x 2 x 2
> y1:=diff(y,x);
:=
2 x2
> y2:=solve(y1 =0,{x});
:=
y2 {x 1 }
28/ > y:= 3*x-5*(sqrt(4+x^2));
:=
y 3 x 5 4 x 2
> y1:=diff(y,x);
:=
4 x2
> y2:=solve(y1 =0,{x});
:=
y2 {x 3}
2 29/> y:= 6*x-8*(sqrt(4*x-x^2));
:=
y 6 x 8 4 x x 2
> y1:=diff(y,x);
:=
y1 6 4 (4 2 x )
4 x x2
> y2:=solve(y1 =0,{x});
:=
y2 {x 4}
5
30/ > y:= 3*sqrt(4-x)+6*sqrt(x+6);
:=
y 3 4 x 6 x 6
> y1:=diff(y,x);
:=
2
1
4 x
3
x 6
> y2:=solve(y1 =0,{x});
:=
y2 {x 2 }
31/ > y:= 3*sqrt(9-x)+6*sqrt(x+6);
:=
y 3 9 x 6 x 6
> y1:=diff(y,x);
:=
2
1
9 x
3
x 6
> y2:=solve(y1 =0,{x});
:=
y2 {x 6 }
32/ > y:= 3*sqrt(12-x)+6*sqrt(x+8);
:=
y 3 12 x 6 x 8
> y1:=diff(y,x);
:=
2
1
12 x
3
x 8
> y2:=solve(y1 =0,{x});
:=
y2 {x 8 }
33/ > y:= x*ln(x);
:=
y x ( ) ln x
> y1:=diff(y,x);
:=
y1 ln x( ) 1
> y2:=solve(y1 =0,{x});
:=
y2 {x e (-1)} 34/ > y:= ln(x)/x;
:=
y ln x( ) x
> y1:=diff(y,x);
:=
x2
( )
ln x
x2
> y2:=solve(y1 =0,{x});
:=
y2 {x e } 35/ > y:= ln(x)/x^2;
:=
y ln x( )
x2
> y1:=diff(y,x);
:=
x3
2 ( )ln x
x3
> y2:=solve(y1 =0,{x});
:=
y2 {x e (1 2/ )}
Trang 536/ > y:= ln(x)*x^2;
:=
y ln x x( ) 2
> y1:=diff(y,x);
:=
y1 x 2 x ( ) ln x
> y2:=solve(y1 =0,{x});
:=
y2 {x e (-1 2/ )}
37/ > y:=( x^2)*ln(x^2);
:=
y x2ln x( )2
> y1:=diff(y,x);
:=
y1 2 x ( ) ln x2 2 x
> y2:=solve(y1 =0,{x});
:=
y2 {x e(-1)},{x e(-1)}
38/ > y:=1*x-ln(x^2-1*x+1);
:=
y x ln(x2 x 1)
> y1:=diff(y,x);
:=
y1 1 2 x 1
> y2:=solve(y1=0,{x});
:=
y2 {x 2 },{x 1 }
39/ > y:=1*x-2*ln(5*x^2+5*x+10);
:=
y x 2 ( ln 5 x2 5 x 10 )
> y1:=diff(y,x);
:=
y1 1 2 (10 x 5 )
5 x2 5 x 10
> y2:=solve(y1=0,{x});
:=
y2 {x 0 },{x 3 }
40/ > y:=1*x+2*ln(5*x^2+5*x+10);
:=
y x 2 ( ln 5 x2 5 x 10 )
> y1:=diff(y,x);
:=
y1 1 2 (10 x 5 )
5 x2 5 x 10
> y2:=solve(y1=0,{x});
:=
y2 {x -1 },{x -4 }
41/ > y:=1*x-1*ln(5*x^2-10*x+10);
:=
y x ln(5 x2 10 x 10 )
> y1:=diff(y,x);
:=
y1 1 10 x 10
5 x2 10 x 10
> y2:=solve(y1=0,{x});
:=
y2 {x 2 },{x 2 }
42/ > y:=1*x-1*ln(1*x^2-10*x+10);
:=
y x ln(x2 10 x 10 )
> y1:=diff(y,x);
:=
y1 1 2 x 10
x2 10 x 10
> y2:=solve(y1=0,{x});
:=
y2 {x 10 },{x 2 }
43/ > y:=1*x*e^(-x^2/2);
:=
y x e( /1 2 x2)
> y1:=diff(y,x);
:=
y1 e( /1 2 x2) x2e( /1 2 x2)ln e( )
> y2:=solve(y1=0,{x});
:=
( )
ln e {x 1 }
( )
ln e
44/ > y:=tan(x)+cot(x);
:=
y tan x( ) cot x( )
> y1:=diff(y,x);
:=
y1 tan x( )2 cot x( )2
> y2:=solve(y1=0,{x});
:=
y2 {x 1 },
4 {x 1 }
4