Quan hệ giữa các yếu tố trong tam giác... Hãy so sánh các góc trong tam giác ABC[r]
Trang 1PHÒNG GD & ĐT HUYỆN THÁI THỤY
TRƯỜNG THCS THÁI HỒNG
MA TRẬN ĐỀ KIỂM TRA HỌC KÌ II, NĂM HỌC 2016– 2017
MÔN TOÁN – LỚP 7
Cấp độ
Cấp độ thấp Cấp độ cao
1 Biểu thức đại
số
Nhận biết được các đơn thức đồng dạng
-Kiểm tra được một số có là nghiệm của đa thức hay không?
-Cộng, trừ hai đa thức một biến
Số câu
Số điểm
%
2 1
2 2
4 3 30%
các số liệu thống
kê bằng bảng tần
số Nêu nhận xét
và tính được số trung bình cộng của dấu hiệu
Số câu
Số điểm
%
2
20%
3 Các kiến thức
về tam giác
-Vẽ hình, ghi giả thiết – kết luận
-Vận dụng các trường hợp bằng nhau của tam giác vuông để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau
Xác định dạng đặc biệt của tam giác,tìm nghiệm của đa thức bậc ba
Số câu
Số điểm
%
1 1
1 1
2 1
4 3 30%
4 Quan hệ giữa
các yếu tố trong
tam giác Các
đường đồng quy
trong tam giác
Biết quan hệ giữa góc và cạnh đối diện trong một tam giác
-Vận dụng mối quan hệ giữa góc
và cạnh đối diện trong tam giác
Số câu
Số điểm
%
1
20% Tổng số câu:
Tổng số điểm:
%
2 1 10%
2 2 20%
6 6 60%
2 1 10%
12 10 100%
PHÒNG GD & ĐT HUYỆN THÁI THỤY
TRƯỜNG THCS THÁI HỒNG
ĐỀ KIỂM TRA GIỮA HỌC KÌ II TOÁN 7
NĂM HỌC 2018 - 2019
Thời gian: 75 phút
Trang 2Bài 1 (1 điểm).
a) Thế nào là hai đơn thức đồng dạng? Cho ví dụ.
b) Tìm các đơn thức đồng dạng trong các đơn thức sau:
2x2y ;
3
2 (xy)2 ; – 5xy2 ; 8xy ;
3
2x2y
Bài 2 (1 điểm).
Cho tam giác ABC có AB = 7cm; BC = 6cm; CA = 8cm Hãy so sánh các góc trong tam giác ABC
Bài 3 (1 điểm).
Điểm kiểm tra một tiết môn Toán của học sinh lớp 7 được ghi lại trong bảng sau:
a) Lập bảng tần số của dấu hiệu và nêu nhận xét;
b) Tính điểm trung bình của học sinh lớp đó
Bài 4 (3 điểm)
a) Tính giá trị của biểu thức sau:
5x – 7y + 1 tại x = 5
1
; y = 7
1
b) Thu gọn và tìm bậc của đa thức sau:
M=6x6y +1
3x
4y3− y7−4x4y3+10 −5x6y +2y7−2,5
c) Tìm đa thức A biết:
A- (5x2− xyz)=xy+2 x2− 3xyz+5
Bài 5 (3.5 điểm).
Cho tam giác ABC vuông tại A Tia phân giác của góc ABC cắt AC tại D Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a) Chứng minh: AD = DH;
b) So sánh độ dài hai cạnh AD và DC;
c) Chứng minh tam giác KBC là tam giác cân.
Bài 6(0.5 điểm): : Tìm x biết: ||x +3|−8|=20
ĐÁP ÁN VÀ BIỂU ĐIỂM
Trang 3Bài 1
a) Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng
phần biến VD: -5x2y3 ;
3
5x2y3 b) Các đơn thức đồng dạng là: 2x2y ;
3
2x2y
0,5
0,5
Bài 2
ABC có: BC < AB < CA
Suy ra A C B
0,5 0,5
Bài 3
a) Bảng tần số:
Nhận xét: nêu từ 3 nhận xét trở lên
b) Số trung bình cộng:
1.3 2.4 3.2 4.3 5.4 6.2 7.3 8.1 9.3 10.5 167
0,5
0,5
1
Bài 4
a) Thay x = 5
1
; y = 7
1
Vào đa thức
ta được 5.5
1
- 7.
7
1
+ 1 = 3 Vậy tại x = 5
1
; y = 7
1
thì giá trị của biểu thức bằng 3
b) Ta có:
M =6x6y +1
3x
4
y3− y7−4x4y3+10 −5x6y +2y7−2,5
M= y7+x6y −3 x4 y3+ 7,5
Đa thức M có bậc bằng 7
c)
A- (5x2− xyz)=xy+2 x2− 3xyz+5
A =(xy+2 x2− 3xyz+5)+(5x2− xyz)
A =xy +2 x2−3xyz+5+ 5x2− xyz
A =(2 x2+ 5x2)+(−3xyz − xyz)+xy+5
A =8 x2−4xyz +xy +5
1
1
Bài 5
1
Trang 4H
B
A
a) AD = DH
Xét hai tam giác vuông ADB và HDB có:
BD: cạnh huyền chung
ABD HBD (gt)
Do đó: ADBHDB(cạnh huyền – góc nhọn)
Suy ra: AD = DH ( hai cạnh tương ứng)
b) So sánh AD và DC
Tam giác DHC vuông tại H có DH < DC
Mà: AD = DH (cmt)
Nên: AD < DC (đpcm)
c) KBC cân:
Xét hai tam giác vuông ADK và HDC có:
AD = DH (cmt)
ADK HDC (đối đỉnh)
Do đó: ADK = HDC (cạnh góc vuông – góc nhọn kề)
Suy ra: AK = HC (hai cạnh tương ứng) (1)
Mặt khác ta có: BA = BH ( do ADBHDB) (2)
Cộng vế theo vế của (1) và (2) ta có:
AK + BA = HC + BH
Hay: BK = BC
Vậy: tam giác KBC cân tại B
Bài 6: ||x +3|−8|=20
||x +3|−8|=20 ⇒ |x +3|−8=20 ; |x +3|−8=−20
|x +3|−8=20 ⇒ |x +3|= 28 ⇒ x = 25; x = - 31
|x +3|−8=−20 ⇒ |x +3|=−12 : vô nghiệm
1
1
0,25
0,25 0,5
GT ABD CBD D AC
DH BC H BC
DH cắt AB tại K a/ AD = DH
KL b/ So sánh AD và DC c/ KBC cân