Tìm tất cả các giá trị của tham số a để khoảng cách từ gốc tọa độ O đến đồ thị của hàm số đạt giá trị lớn nhất Bài 4.. 3,5 điểm Cho trước tam giác đều ABC nội tiếp đường tròn O.. Đường t
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ ĐÀ NẴNG
KỲ THI CHỌN HỌC SINH GIỎI LỚP 9
NĂM HỌC 2015-2016
Thời gian làm bài : 150 phút
Bài 1 (1,5 điểm)
Cho biểu thức M 3a 9a 3 a 1 a 2
a a 2 a 2 1 a
với a0;a1 a) Rút gọn biểu thức M
b) Tìm tất cả các giá tị nguyên của a để biểu thức M nhận giá trị nguyên
Bài 2 (2,0 điểm)
a) Giải phương trình x 3 4 x 1 x 8 6 x 1 9
b) Giải hệ phương trình
2 2 2
x xy xz 48
xy y yz 12
xz yz z 84
Bài 3 (2,0 điểm)
a) Cho
2016 thõa sè 2 3016 thõa sè 2
a 2 2 2 2 vµ b 2 2 2 2 Chứng minh rằng a và b
có cùng chữ số hàng đơn vị
b) Cho hàm số y ax a 1 với a là tham số, a 0 và a 1 Tìm tất cả các giá trị của tham số a để khoảng cách từ gốc tọa độ O đến đồ thị của hàm số đạt giá trị lớn nhất
Bài 4 (3,5 điểm) Cho trước tam giác đều ABC nội tiếp đường tròn (O) Trên cung
nhỏ BC lấy điểm M tùy ý Đường tròn (M;MB) cắt đoạn thẳng AM tại D
a) Chứng minh rằng tam giác BDM là tam giác đều
b) Chứng minh rằng MA=MB+MC
c) Chứng minh rằng khi M thay đổi trên cung nhỏ BC thì điểm D luôn luôn nằm trên một đường tròn cố định có tâm thuộc đường tròn (O)
Bài 5 (1,0 điểm) Cho x+y+z= 0 và xyz 0 Tính giá trị của biểu thức
P
x y z y z x z x y
-HẾT
Trang 2ĐÁP ÁN HỌC SINH GIỎI 9 ĐÀ NẴNG 2015-2016 Câu 1
Ta có:
a 1 a 1 a 2 a 2 3a 3 a 3
M
3a 3 a 3 (a 1) (a 4) a 3 a 2
M
a 1 a 2 a 1 M
a 1
a 1 a 2
M nguyên 2
a 1
nguyên a 1 là ước của 2
a 1 1;1;2 a 0;4;9 (do a 0)
Câu 2
2a
Phương trình
x 1 4 x 1 4 x 1 6 x 1 9 9
x 1 2 x 1 3 9
x 1 2 x 5
2b
Cộng 3 phương trình của hệ ta được 2
x y z 144 x y z 12 Mặt khác hệ
x(x y z) 48 y(x y z) 12 z(x y z) 84
kết hợp với trên ta có hai trường hợp sau
*) Với x+y+z= - 12 hệ có nghiệm x;y;z 4; 1; 7
*)Với x+y+z=12 hệ có nghiệm x;y;z 4;1;7
Câu 3
3a Nhận xét 2 2 2 2 2 2 2 2 16 (8 thừa số 2 )
Trang 32016 chia hết cho 8 được 252 như vậy có thể phân số a thành 252 nhóm, mỗi nhóm
có giá trị bằng 16 (có hàng đơn vị là 6) nên tích của 252 nhóm này cũng có hàn đơn vị là 6
3016 chia hết cho 8 được 377 như vậy có thể phân số b thành 377 nhóm, mỗi nhóm
có giá trị bằng 16 (có hàng đơn vị là 6) nên tích của 377 nhóm này cũng có hàng đơn vị là 6
Suy ra điều phải chứng minh
3b
Tam giác vuông OAB tại O nên nếu gọi h là khoảng cách từ O đến đồ thị hàm số
2
2
h OA OB a 1 a 1 a 1
2 a
a 2a 1 2a
Dấu đẳng thức xảy ra khi a=1 Vậy khi a=1 thì khoảng cách từ O đến đồ thị hàm số
là lớn nhất
Câu 4
a) MB = MD (bán kính đường tròn (M))
0
BMD BCA 60 (cùng chắn cung AB)
O A
M
Trang 4Nên tam giác BMD đều
b) Hai tam giác ABD và CBM bằng nhau vì AB = CB ; BD = BM
Và
0
ABD 60 DBC CBM DA MC
MA MD DA
Mà MD=MB vậy MA=MB+MC
c) Gọi I là giao điểm của (O) với phân giác CO (trong tam giác đều ABC)
I
là điểm chính giữa của cung nhỏ AB và I là điểm cố định thuộc (O) Nên MI là phân giác BMD (góc nội tiếp chắn cung AB của đường tròn (O)) Nên MI là trung trực đoạn thẳng BD vì BDM là tam giác đều
Suy ra ID=IB
Do đó D luôn thuộc đường tròn I;IB cố định có tâm thuộc (O)
Câu 5
Ta có : x+y+z=0 x (y z);y (z x);z (x y)
x y z ;y z x ;z x y
P
2xy 2yz 2xz 2xyz