là một nguyên hàm của hàm số trên và,... Cho là hàm số chẵn trên thoả mãn.. Cho hàm số có đạo hàm liên tục trên đoạn thỏa.. Cho hàm số có đạo hàm liên tục trên đoạn thỏa.. Gọi , lần
Trang 2Câu 6 Cho là một nguyên hàm của hàm số Khi đó hiệu số bằng
Câu 12 Giá trị nào của b để
Câu 13 Giá trị nào của để
( )
F x f x( ) F ( )1 - F ( )2
( )2 1d
f x x
2 1
d
F x x
ò
-6 2 0sin d
23
512-4
1 2 0
I =òx +x x
1 3 0
4
Trang 3Câu 14 Tích phânI = có giá trị là:
cos2xdx
p
ò
12
2 2 4sin
dx I
x
p p
1 1 0
01
I =òx +x dx
1
2 3 0
03
x x
1
Trang 4( 1) d
83
1d
218
258
ln4
1d
141
0
d2
-a
Trang 5Câu 30 Tích phân có giá trị là
I =ò x x
32
12
231
65
45
5
1 3 20
d
x I
I = I =ln2 I = - ln2
8 3 1
1d
x x x
ò
-141
10
14210
851
2 0
Trang 6f x x
2 1
d
F x x
ò
3 d x
2ln3
Trang 7Câu 43 Kết quả của tích phân bằng bao nhiêu?
f x x
-=ò
( )2 1
2 1
1
2f x- x=ò
( )
f x é ùê ú1;2 f( )1 =1 f( )2 =2
( )2 1
f x x =
2 0
Trang 8Câu 49 Cho hàm số liên tục trên đoạn và Biết ,
f x x =
-ò ( )d 5
I =òf x x
1
( )2 1
f x x =
3 5
f x x =
3 2
f x x =
5 1d
f x x
ò
1 0
f x x =
b c
f x x =
c a
f x x
ò ( )d 2
c a
f x x =
c a
f x x =
c a
f x x =
c a
f x x =
ò
Trang 9Câu 56 Cho hàm số có đạo hàm liên tục trên , và
f x x¢ =ò
f x x =
2 1
f x x =
3 1
Trang 10Câu 67 Hàm số liên tục trên là một nguyên hàm của hàm số trên và
, Mệnh đề nào sau đây đúng?
1d
- ò
-1.2
( )
f x é ùê ú0;3 f( )0 =2
( )3 0
f x x =
9 2
f x x =
9 2
f x x =
9 2
f x x =
ò
2 20
f x x =
b a
g x x =
b a
I =òéêëf x - g x ùúû x
5
Trang 11Câu 70 Cho là hàm số chẵn trên thoả mãn Chọn mệnh đề đúng
Câu 74 Biết , trong đó Khi đó, và x đồng thời là hai
nghiệm của phương trình nào dưới đây?
f x x
-=ò
( )3 3
f x x =
0 3
f x x =
ò
5 2 1
I = -m n- I = -n m I =m n- I =m n+
1 32 0
0cos2 d
f x x =
2 0
Trang 12Câu 81 Biết Khi đó nhận giá trị bằng:
Câu 82 Giả sử Khi đó giá trị là
f x = x - x - x+ g x( ) =2x3+x2- 3x- 1
( ) ( )2
f x x =
ò
1 2
f x x =
ò
2 0( )d
Trang 13Câu 84 Biết rằng Giá trị của là :
2x- 1 x= aò
a
2 1
p
=ò
2 0sin3 cosx xdx
p
ò
12
13
2sin2
p
=ò
14
I = - p
3
I =p1
ln53
Trang 14Câu 94 Biết , trong đó Khi đó, và x đồng thời là hai
nghiệm của phương trình nào dưới đây?
3
1d2
1 2 0
1d
5
1 8ln
2 5
82ln5
82ln5-
3 2 2
I = -m n- I = -n m I =m n- I =m n+
5 2 1
Trang 15Câu 98 Cho là hàm số chẵn trên thoả mãn Chọn mệnh đề đúng
Câu 101 Hàm số liên tục trên là một nguyên hàm của hàm số trên và
, Mệnh đề nào sau đây đúng?
f x x
-=ò
( )3 3
f x x =
0 3
f x x =
ò ( )d 10
b a
f x x =
b a
g x x =
b a
I =òéêëf x - g x ùúû x
5
2 20
f x x =
9 2
f x x =
9 2
f x x =
9 2
1d
- ò
-1.2
( )
f x f x¢( ) ¡ f( )0 = - p
( )2 0
Trang 16f x x =
3 1
I =òg x x
14
( )2 1
f x x =
2 1
f x x¢ =ò
f x x =
b c
f x x =
c a
f x x
ò
Trang 17f x x =
c a
f x x =
c a
f x x =
c a
f x x =
ò1
2ln3
( )2 1
f x x =
3 5
f x x =
3 2
f x x =
5 1d
I =òf x x
1
1 2 0d
f x x =
-ò ( )d 5
f x x
ò
4 2 3
Trang 18f x x =
2 0
f x x
-=ò
( )2 1
2 1
2f x- x=ò
21
Trang 19Câu 125. Biết rằng với và là phân số tối giản thì giá trị của
21
a x
f x x =
b c
f x x =
c a
f x x
ò
3 2 2
21
a x
b
a b+
Trang 20Câu 138 Tính tích phân Với , , là các số
nguyên Khi đó biểu thức có giá trị bằng
7
5 1
81
a b c
2 4
a b+ +c
Trang 21Câu 139 Cho hàm số có đạo hàm liên tục trên đoạn thỏa Tính
Câu 140 Cho hàm số có đạo hàm liên tục trên đoạn thỏa
Tính
Câu 141 Tính tích phân Với , , là các số
nguyên Khi đó biểu thức có giá trị bằng
81
d
2 1
d16
x I
x
=
+ò
8 4
dt.I
t
=ò
8 4
d
I =òt t
5 4
dt.I
t
=ò
5 4
d
I =òt t
2 2 0sin cos d
I =òu u
1 0
I = òu u
0 2 1d
-= - ò
1 2 0d
I = - òu u
Trang 22x x J
x
=
+ò
18
4
3 2 2
d1
-ln2
ln3
K =
1 0
d
x x I
x
=
+ò
13
21
0
I =òx x+ x
16135
116135
114135
14135
1
2 0
d1
( )
2 2 2 0
a
x a - x x a>
ò
Trang 23A B C D
Câu 153 Tích phânI = có giá trị là:
Câu 154 Cho , ta tính được:
A I = cos1 B I = 1 C I = sin1 D Một kết quả khác Câu 155 Tích phân bằng:
7 3 0
1
1+ x+1dxò
1ln
1 1ln2
2- 3
1 1ln2
2 20
6 3 0sin cos
0tan
1ln22-
Trang 2412
2
1
2 ln2
6 0tan
p
=ò
3ln
ò
3
22
1
1 ln
e
x dx x
+ò
13
23
3
3
2 1
( )
1
19 0
1420
1380
1342
14621
3 0
Trang 25-ò
-
Câu 171 Cho
( )4 0
14
18
8
2 2 0sin cos d
I =òu u
1 0
I = òu u
0 2 1d
-= - ò
1 2 0d
I = - òu u
2 16
2 0
d16
x I
x
=
+ò
8 4
dt.I
t
=ò
8 4
d
I =òt t
5 4
dt.I
t
=ò
5 4
d
I =òt t
1.3
27
12
3 d
Trang 26I =
3 2 0d
03
t
I =
1 0
ln21
x
a b e
+
= ++
p
1.7
d
e
I =òx e x x+
(e e+ 2) e e+ 2- e e e e e2 + 2- e e
Trang 271- x xd
1 3 0
3 t dtò
1 2 0
3òt td
1 3 0d
t t
ò
1 0
3 dòt t
3 0
Trang 281.7
21
I =òx - x x t= 4- x2.
Trang 29-ò
-
Câu 198 Cho
( )5 2
I =òf x- dx
MỨC 3
Câu 199 Cho hàm số Gọi , lần lượt là giá trị nhỏ nhất, giá trị lớn nhất
của hàm số trên đoạn Tính
3
02
t
I =
3 2 0d
03
Trang 30Câu 200 Cho tích phân với , là các số nguyên Mệnh đề nào
1 sin
dsin
x x x
p p
f x x =
1 0
dt dx x
= x= Þ1 t =1;x= Þe t=2
( )2
Trang 31Học sinh này giải đúng hay sai? Nếu sai thì sai ở bước nào?
A Bài giải đúng B Sai ở bước III C Sai từ bước II D Sai từ bước I Câu 206. Cho tích phân Đặt ta được
d
x I
,
m n Î ¢ T =3m n+ 7
m
2 0
3d161
m
x
x x
=+
ò
73;
2
mÎ çæ öçç ÷÷÷÷
çè ø
30;
mÎ çæ öçç ÷÷÷÷
çè ø
7
;52
mÎ çæ öçç ÷÷÷÷
çè ø
2 0
f x x x =
4 0d
Trang 32Câu 215. Cho số thực m thoả mãn , các giá trị tìm được của thỏa mãn điều kiện
nào sao đây?
a x x
1 d1
1 2 0
1 2 0
1 2 0
=
2 1
Trang 33Câu 219 Cho có kết quả dạng với Khẳng định nào sau
đây đúng:
Câu 220. Cho số thực m thoả mãn , các giá trị tìm được của thỏa mãn điều kiện
nào sao đây?
1 d1
1 2 0
1 2 0
1 2 0
a x x
f x x x =
4 0d
Trang 3473;
2
mÎ çæ öçç ÷÷÷÷
çè ø
30;
mÎ çæ öçç ÷÷÷÷
çè ø
7
;52
x I
,
m n Î ¢ T =3m n+ 7
dt dx x
= x= Þ1 t =1;x= Þe t=2
( )2
Trang 35A Bài giải đúng B Sai ở bước III C Sai từ bước II D Sai từ bước I.
Câu 231 Có bao nhiêu số thực thỏa mãn điều kiện ?
Câu 236 Cho hàm số Gọi , lần lượt là giá trị nhỏ nhất, giá trị lớn nhất
của hàm số trên đoạn Tính
MỨC 4
Câu 237. Giả sử hàm số liên tục, nhận giá trị dương trên và thỏa mãn
với mọi Mệnh đề nào sau đây đúng?
(0;10 )
0
2sin sin2 d
f x x =
1 0
Trang 36A B C D
Câu 238. Giả sử hàm số liên tục, nhận giá trị dương trên và thỏa mãn
với mọi Mệnh đề nào sau đây đúng?
4 0
p p
p p
0 0
p p
0sin
p
=ò
3 0cos
p
3 16
Trang 37x
I =òxe dx+
22
Trang 38=ò
14
p p
p p
0 0
p p
2 0cos d
2 1
e e
2 2 1 1
e e
Trang 39Câu 256 Biết , (với , ) Tính
e
-
2 14
1
cos
x x
p
p
= +ò
p
=ò
2
1 2 0
Trang 40Câu 263 Tính giá trị của
Câu 264 Giả sử là một nguyên hàm của trên và Khẳng định
nào sau đây đúng?
Câu 267 Giả sử là một nguyên hàm của trên và Khẳng định
nào sau đây đúng?
Trang 41Câu 270 Giá trị của tích phân được biểu diễn dưới dạng Khi đó
p
=ò
2
4 0cos2 d
p
p
= +ò
e
-
2 14
ln d
e
Trang 42e e
2 2 1 1
e e
I =òx f x x
8
Trang 43Câu 284 Cho trong đó hàm số là hàm số chẵn trên , lúc đó
bằng
Câu 285 Tích phân có giá trị là:
Câu 286. Biết (với là số thực, là các số nguyên dương và là phân số
tối giản) Tính giá trị của
1 -1
d
f x x
ò
2 20162
d1
1 2
1d2
=ò
2
I =
.3
2
Trang 44Câu 291 Cho biết Tính tích phân
Câu 295. Biết (với là số thực, là các số nguyên dương và là phân số
tối giản) Tính giá trị của
1 2
1d2
=ò
2
I =
.3
d1
1 -1
d
f x x
ò
Trang 45Câu 298. Cho hàm số liên tục trên và Tính
2 1
Trang 46Câu 305 Biết với là các số nguyên Tính