1. Trang chủ
  2. » Giáo án - Bài giảng

Tiet 34 bội CHUNG NHỎ NHẤT

14 51 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,24 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bội Chung Nhỏ Nhất... Bội chung của hai hay nhiều số là bội của tất cả các số đó... Bài 18BỘI CHUNG NHỎ NHẤT... Bước 2 Bước 2: : Chọn ra các thừa số nguyên tố chung và riêng Chọn ra các

Trang 1

Bội Chung Nhỏ

Nhất

Trang 2

KIỂM TRA BÀI CŨ

- Thế nào là bội chung của hai hay nhiều số?

- Áp dụng:Tìm B(4); B(6); BC(4, 6)

B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;…}

B(6) = {0; 6; 12; 18; 24; 30; 36;…}

BC(4, 6) = {0; 12; 24; 36; …}

0 0

12 12

24 24

36 36

Giải:

12

Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung

của 4 và 6

Bội chung của hai hay nhiều số là bội của tất cả các số đó

12 là bội chung nhỏ nhất

của 4 và 6

Trang 3

Bài 18

BỘI CHUNG NHỎ NHẤT

Trang 4

B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;…}

B(6) = {0; 6; 12; 18; 24; 30; 36;…}

BC(4, 6) = {0; 12; 24; 36; …}

0 0

12 12

24 24

36 36

a) Ví dụ 1

12

Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ

nhất khác 0 trong tập hợp các bội chung của các số đó

Kí hiệu: BCNN(4, 6) = 12

b) Định nghĩa

c) Nhận xét

Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4,6)

Trang 5

BCNN(a, 1) = ; BCNN(a, b, 1) = a BCNN(a, b)

Trang 6

2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố.

a)Ví dụ 2:

3

8 2 =

BCNN (8, 12, 30) =

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực

hiện ba bước sau:

Bước 1

Bước 1: : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2

Bước 2: : Chọn ra các thừa số nguyên tố chung và riêng Chọn ra các thừa số nguyên tố chung và riêng .

Phân tích mỗi số ra thừa số nguyên tố Chọn ra các thừa số nguyên tố

chung

Lập tích các thừa số đã chọn, mỗi thừa số lấy số

mũ lớn nhất của nó

Bước 3

Bước 3: : Lập tích các thừa số đã chọn, mỗi thừa số lấy số Lập tích các thừa số đã chọn, mỗi thừa số lấy số

mũ lớn nhất của nó Tích đó là BCNN phải tìm.

Tìm BCNN (8, 12, 30)

b) Quy tắc: SGK/58

2 , , 3 3 ,

30 = 2 3 5

12 = 22 3

Tìm BCNN (8, 12, 30)

a)Ví dụ 2: Tìm BCNN (8, 12, 30)

riêng.

5

23 3 5 = 120

Trang 7

So sánh cách tìm ƯCLN

và BCNN

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố:

Bước 3: Lập tích các thừa số đã chọn mỗi thừa số lấy với số mũ:

Trang 8

Tìm BCNN (8, 12); BCNN(5, 7, 8); BCNN(12, 16, 48)

a

a) 8 = 2 ) 8 = 2 3

12 = 2 2 3 BCNN(8, 12) = 2 3 3 = 24

c) 12 = 2 2 3

16 = 2 4

48 = 2 4 3 BCNN(12, 16, 48) = 2 4 3 = 48

b) 5 = 5

7 = 7

8 = 23

BCNN(5, 7, 8) = 2 3 5 7 = 8 5 7 = 280

?1

Trang 9

c) Chú ý:

a/ Nếu các số đã cho từng đôi một

a/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau nguyên tố cùng nhau

thì BCNN của chúng là tích của các số đó.

Ví dụ: Ba số 5; 7; 8 không có thừa số nguyên tố chung nên

BCNN(5, 7, 8) = 5.7.8 = 280

b/ Trong các số đã cho, nếu

b/ Trong các số đã cho, nếu số lớn nhất là bội của các số số lớn nhất là bội của các số

còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy.

Ví dụ: Ta có số 48 chia hết cho cả 12 và 16 nên

BCNN(12, 16, 48) = 48

c) 12 = 2 2 3

16 = 2 4

48 = 2 4 3 BCNN(12, 16, 48) = 2 4 3 = 48

Trang 10

Câu 1:

BCNN của 10 và 20 là:

A 20

B 100

C 30

D 40

Đúng!

Bạn giỏi

quá!!

Chưa chính xác rồi!

Chưa chính xác rồi!

Chưa chính xác rồi!

Luyện tập

Trang 11

D 60

B 30

C 15

A 40

Đúng!

Hoan hô bạn!! Chưa chính Chưa chính xác rồi!xác rồi!

Chưa chính xác rồi!

Câu 2:

BCNN của 10, 12 và 15 là:

Trang 12

B 792 D 72

C 88

A 99

Đúng!

Hoan hô bạn!!

Chưa chính xác rồi!

Chưa chính xác rồi!

Chưa chính xác rồi!

Câu 3:

BCNN của 8, 9 và 11 là:

Trang 13

a) 60 = 22.3.5

a) 60 và 280 c) 13 và 15

Giải

c) BCNN(13, 15) = 13.15 = 195

Trang 14

vÒ nhµ

-Lµm bµi tËp

-Đọc trước phần 3 bài ”Bội chung nhỏ nhất “

vÒ nhµ

Ngày đăng: 01/09/2019, 17:24

TỪ KHÓA LIÊN QUAN

w