1) (A–07) 3 1
3
2log (4 x 3) log (2 x 3) 2
4 x )
3 log log ( 4 4) log 3
2
x
x
1 2(log 1) log log 0
4
4)(B2–03)log0,5 x 2log0,25( x 1) log 6 0 2
(x 3)
log ( 3) log ( 1) log (4 )
2 x 4 x x (x = 3 x= –3+ 12)
6) (B1–04)
1
4 2
x
4
log [log ( x 2x x)] 0 (x >1 x< - 4)
8)(B2–04)log3x log 3x ( x>3 1/3 <x <1)
9) (D–03)2x2x 22 x x2 3
3
1 2 9
2
2
x x x
x
(1 2 x 1 2) 11) (B2–06) 9x2 x1 10.3x2 x 2 1 0
12) (A.06) 3.8x+4.12x–18x–2.27x=0 (x=1)
13) (D–06)2x x2 4.2x2x 22x 4 0
14) (CĐHQ– 05)3 1 22 1 122 0
x
x x
15) (B–07) 2 1 x 2 1 x 2 2 0 (x = ± 1)
16) (D2–03)log (55 x 4) 1
x
17) (B–06)log (45 x 144) 4 log 2 1 log (25 5 x2 1)
18) (B–02)log (log (93 x 72)) 1
1
4.2 3
x
( x log 3)2 20) (D1–06)4x –2x+1 +2(2x–1)sin(2x +y –1) +2 =0 (x =1, y = – 2p–1 +k2π))
21) (D1–06) log (33 x 1) log (33 x1 3) 6
( x=log 103 x= 3
28 log
27) 22) (D1–02) 16 3
2 3 27
log x x 3log x x 0 (x=1)
23) (A1–02)
2 1
2
log (4x 4) log (2 x 3.2 )x
( x 2) 24) (A2–04)2 1 2 3 2
25) (A2–03) 15.2x1 1 2x 1 2x1
26) (D1–03) f(x)=x log 2.x Giải bpt f ’(x)≤0 (0 < x e x 1) 27) (B3-03) 3x 2x 3 x 2 ( x=0 x=1) 28) xlog 9 2 x23log 2x xlog 3 2 (x = 2 ) 29) log 3 5 log 5
4 x
30) log (2 x25x 5 1) log (3 x25x7) 2 ( 5 5 5 5
31) (A-08) log (2x2x-1 2+ -x 1) log (2x-1)+ x 1+ 2=4 x 2;x 5
4
32) (B-08)
2 0,7 6
4
33) (D-08)
2 1 2
log x - x+ ³ 0
34) (A1-08) 1 2
3
1
+
x
35) (A1-08) esin(x-4p) =tanx x= /4 + k 36) (A2-08)
3
log
2 2log (2x+ +2) log (9x- 1)=1 x= 1; x = 3
2 38) (B2-08) 32x+1- 22x+1- 5.6x £ 0
2 3
1 log 2
£
x
39) (D1-08)22x2-4x-2- 16.22x x- 2-1- 2 0£ 1- 3£ £ +x 1 3
2
3£ x<2 41) (D2-07) log22x- 1= + -1 2
x
x
42) (D2-07) 23x+1- 7.22x+7.2x- 2=0
x= 0; ± 1 43) (A1-07) (log 8 logx + 4x2)log 22 x³ 0 0< £x 21Ú >x 1
log + 4 2
x
2 45) (B1-07)log (3x- 1)2+log (23 x- 1)=2 x=2
3
4
1 log
-x
x
3 ; x= 81