1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Solutions to Section bài tập giải tích

231 74 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 231
Dung lượng 837,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This establishes the desired result Exercise 4.5 Suppose that limn→∞an= 0 and {bn}∞ n=1is bounded.. Show that M − cannot be an upper bound ofthe sequence... d By the previous exercise,

Trang 1

If a ≥ 0 then −a ≤ 0 so that |a| = max{−a, a} = a If a < 0 then −a > 0 sothat |a| = max{−a, a} = −a The graph is shown in Figure 1

Figure 1Exercise 1.3

Show that |a| ≥ 0 with |a| = 0 if and only if a = 0

Suppose first that a ≥ 0 Then |a| = a

• If b ≥ 0 then |b| = b In this case, |a| = |b| implies that a = b

Trang 2

• If b < 0 then |b| = −b In this case, |a| = |b| implies that a = −b.

Suppose now that a < 0 Then |a| = −a

• If b ≥ 0 then |b| = b In this case, |a| = |b| implies that −a = b which isthe same as a = −b

• If b < 0 then |b| = −b In this case, |a| = |b| implies that −a = −b which

Show that | − a| = |a|

Solution

If a ≥ 0 then −a < 0 Thus, |a| = a and | − a| = −(−a) = a Hence,

| − a| = |a| If a < 0 then −a > 0 In this case, |a| = −a and | − a| = −a.That is, | − a| = |a|

Exercise 1.7

Show that |ab| = |a| · |b|

Solution

Suppose first that a ≥ 0 Then |a| = a

• If b ≥ 0 then |b| = b Moreover, ab ≥ 0 In this case, |ab| = ab = |a| · |b|

• If b < 0 then |b| = −b Moreover, ab ≤ 0 In this case, |ab| = −ab =a(−b) = |a| · |b|

Suppose now that a < 0 Then |a| = −a

• If b ≥ 0 then |b| = b Moreover, ab ≤ 0 In this case, |ab| = −ab = (−a)b =

Trang 3

If a > 0 then 1a > 0 Thus, 1

a

= 1a = |a|1 If a < 0 then 1a < 0 Thus,

Solution

Using both Exercise 1.7 and Exercise 1.8 we can write the following a

b

= ...

n

∞ n=1 converges to 1, where C 6= is a con-stant

Solution

Let  > We want to find a positive integer N such that 1... through by an+1 to obtain

an+2

an+1 = +

an

an+1.Take the limit as n → ∞ to obtain

L =...

n=1 is bounded from above with an upperbound equals to

(d) By the previous exercise, the sequence is convergent say to A Using thearithmetic operations of sequences, we can write

Ngày đăng: 05/03/2019, 22:28

TỪ KHÓA LIÊN QUAN

w