1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lecture 9 heat engine

11 65 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 224,9 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Trang 1

CHAPTER 22 HEAT ENGINES,

ENTROPY, AND THE SECOND LAW

OF THERMODYNAMICS

Lecturer: Tran Thi Ngoc Dung

Trang 2

heat engine

A heat engine is a device that takes

in energy by heat and, operating in a cyclic process, expels a fraction of that energy by means of work

• A heat engine carries some working substance through a cyclic process during which

• (1) the working substance absorbs

energy by heat from a high-temperature energy reservoir,

• (2) work is done by the engine,

• (3) energy is expelled by heat to a

lower-temperature reservoir

Trang 3

The Efficiency of an Engine

h

Q

' W reservoir

_ hot _ from _

received _

Heat

engine _

the _ by _ done _

Work

The Efficiency of an Engine

Engine operates in a cycle process, the change in internal energy is 0:

' c h

c

Q W

'

Work done by the

engine:

0 W

Q Q

h

' c h

' c h

Q 1

Q

Q Q

Q

' W

Trang 4

Example

• An engine transfers 2.00 x 10 3 J of energy from a hot reservoir during a cycle and transfers 1.50 x 10 3 J as exhaust to a cold reservoir

(A) Find the efficiency of the engine

(B) How much work does this engine do in one cycle?

J 10 5

0 )

10 5

1 ( )

10 2

( Q

Q '

W

%

25 10

2

10 5

.

1 1

Q

Q 1

e

3 3

3

' c h

3

3

h

' c

Trang 5

The Carnot Engine

• The engine operates in a cyclic process consisting of 2 isothermal processes and 2 adiabatic processes

) V

V ln(

T

) V

V ln(

T 1 Q

' Q 1

e

) V

V ln(

nRT Q

'

Q

) V

V ln(

nRT Q

Q

0 Q

: adiabatic

:

DA

0

) V

V ln(

nRT Q

: isothermal

:

CD

0 Q

: adiabatic

:

BC

0

) V

V ln(

nRT Q

: isothermal

:

AB

A

B h

D

C c

h c

D

C c

CD c

A

B h

AB h

DA

C

D c

CD BC

A

B h

AB

Trang 6

The Carnot Engine (cont.)

D

C A

B

1 D c

1 A h 1

1 C c

1 B h 1

A

B h

D

C c

h c

V

V

V

V

V T V

T const

TV : adiabatic

:

DA

V T V

T const

TV : adiabatic

:

BC

) V

V ln(

T

) V

V ln(

T 1 Q

' Q

1

e

h

c

T

T 1

e  

Trang 7

Carnot Cycle

In process D -A , (Active

Fig 22.9d), the base of the

cylinder is replaced by a

nonconducting wall and the

gas is compressed

adiabatically

The temperature of the gas

increases to T h, and the

work done by the piston

on the gas is W DA

In process C S D (Active Fig 22.9c), the

gas is placed in thermal contact

with an energy reservoir at temperature T c

and is compressed isothermally

at temperature Tc

During this time, the gas expels energy

|Qc| to the reservoir and the work done by the piston on the gas is W CD

Process A B is an isothermal expansion at temperature T h The gas is placed in thermal contact with an energy reservoir at

temperature T h During the expansion, the gas absorbs

energy |Q h| from the reservoir through the base of the cylinder

and does work W AB in raising the

piston

In process B C (Active Fig 22.9b), the

base of the cylinder is replaced by a thermally nonconducting wall and the gas expands adiabatically; that is, no energy enters or leaves the system by heat During the expansion, the temperature of the gas

decreases from T h to T c and the gas does

work W BC

in raising the piston

Trang 8

22.2 Heat Pumps and Refrigerators

In a refrigerator or a heat

pump, the engine takes in

energy |Q c | from a cold

reservoir and expels energy

|Q h | to a hot reservoir (Active

Fig 22.4), which can be

accomplished only if work is

done on the engine

Trang 9

Refrigerator

c h

c

c h

c

T T

T )

e mod cooling

( COP :

cycle _

Carnot

Q '

Q

Q )

e mod cooling

( COP

c h

c h

c h

c

Q '

Q Q

Q W

0 W Q

Q

U

W

Q or

refrigerat _

the _ on _ done _

Work

reservoir _

cold _

from _

received _

heat )

e mod cooling

(

COP

The effectiveness of a heat pump /refrigerators is described in terms of a

number called the coefficient of performance

Trang 10

Heat Pump

c h

h

c h

h

c h

c h

c h

h

T T

T )

e mod heating

( COP :

cycle _

Carnot

Q '

Q

'

Q )

e mod heating

(

COP

Q '

Q Q

Q W

0 W

Q Q

U

W

' Q or

refrigerat _

the _

on _ done _

Work

reservoir _

hot _

to _ delivered _

heat )

e mod heating

(

COP

Trang 11

Example 22.5 Efficiency of the Otto Cycle

Find the thermal efficiency of an engine operating in an idealized Otto cycle Treat the working substance as an ideal gas

1

1

2 h

c

A D

B C

D

C A

B 1

2

1

1

1 2 C

1 1

D

1

1 2 B

1 1

A

C

A D

h c

A D

V DA

c

B C

V BC

h

D A

V DA

CD

B C

V BC

AB

V

V 1

Q

' Q 1

e

T T

T T

T

T T

T V

V

V T V

T

const TV

: adiabatic

:

CD

V T V

T

const TV

: adiabatic

:

AB

T T

T T

1 Q

' Q 1

e

) T T

( nC Q

'

Q

) T T

( nC Q

Q

0 ) T T

( nC Q

: ric isovolumet

:

DA

0 Q

: adiabatic

:

CD

0 ) T T

( nC Q

: ric isovolumet

:

BC

0 Q

: adiabatic

:

AB





Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN