Mô tả: Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique
Trang 1Lecture 4 WORK and ENERGY
Trang 2OUTLINE
• Work and Kinetic Energy
• The Work-Kinetic Energy Theorem
• Power
• Conservative Force-Nonconservative Force
• Potential Energy
• Mechanical Energy
• Conservation of Mechanical Energy
Trang 34.1 Work and Kinetic Energy
v d v m
ds dt
v
d m ds
F
s F Fs
cos
2
2
1
mv
K
F=const
s
2 1
2 2
2
1 2
1
mv mv
K
W
The work done by a constant force F on the object when it moves a straight distance s is:
In general case, the work is not constant, the path is a curve
The work done by force F when the object moves a very small displacement ds (we can consider F constant and ds a straigh linet:
2 1
2 2 2
1 2
1
2
1
v m v
m v
d v m ds
F
W
v
v
The work done by force F when the object moves from position (1) to (2) is:
We define: Kinetic Energy:
F
ds (1)
(2)
The total work done on a particle is equal to the change in its kinetic energy
Work-Kinetic Energy Theorem
Trang 44.2 Power
P
mv mv
P
W
t
mv mv
W
t P W
2 1
2 2
2 1
2 2
2
1 2
1 2
1 2
1
const P
if
time of
unit per
done
work Power
_ _
_
_
dt
ds F
dt
dW
1
t
t
Pdt dW
W
Trang 5Conservative Nonconservative Force
work done by the force is independent on the path, it is dependent only on the
initial and final position
- Gravity and spring force are
conservative forces,while kinetic friction
is not
Trang 6Fgrv
ds
(1)
(2)
M
m
dr
r
2
r1
Work done by the grav force F on object m when it moves a displacement ds:
dr r
Mm G
ds F ds
F dW
dr
2
cos
1 2
2
2
Mm G
r
Mm G
dr r
Mm G
W
r
r
Work done by the grav force F on object
m when it moves from (1) to (2)
+ Work done is independent of the path, but of the initial and final position
gravitation force is conservative
+ we define a scalar quantity called gravitational potential energy of two object sseparated by a distance r :
C r
Mm G
r
U( )
2 2
11
/
10 67
.
Universal Graviattional Cconstant
If we choose U= 0 when r= , we have C=0, If we choose U=0 on the
surface of Earth: C=GMm/R
U U
U
W 1 2
We can write:
Trang 7Conservative Forces
1 The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle
2 The work done by a conservative force on a particle moving through any closed path is zero (A closed path is one in
which the beginning and end points are identical.)
3 the work Wc done by a conservative force on an object as
the object moves from one position to another is equal to the initial value of the potential energy minus the final value
(1)
(2) (a)
(b)
U U
U ds
F ds
F W
b
c a
) 2 1 (
)
2 1 (
.
0
) (
.
C
c ds F
(1) (2)
F
ds
Trang 8Mechanical Energy
• If an object is exerted by
Conservative Force Fc
and Nonconservative
Force Fnc,
• from the Work-Kinetic
Energy Theorem :
• Fc is conservative:
• From (1) and (2):
• Mechanical Energy:
E=K+U
nc
nc
F
F W U
K U
K
W U
U K
K
) (
)
2 1
1 2
nc
F a
) 1
(
1
2 K WF c WF nc
K
) 2
(
2
1 U U
U
W
c
nc
F
W E
E
Trang 9Conservation of Mechanical
Energy
The change in Mechnaical energy of an object is equal to the work done by
nonconservative force on the object as it takes a path form position (1) to (2)
If Fnc= 0 or WFnc =0 => E=0: E=const Conservation of Mechanical Energy
nc
F
W E
E
Trang 10Conservative Force
& Potential Energy
z
U F
y
U F
x
U F
dz z
U dy
y
U dx
x
U dU
dW
ve conservati is
F
dz F dy
F dx
F ds
F dW
k dz j
dy i
dx ds
k F j
F i
F
F
z y
x
z y
x c
z y
x
;
;
) 2 (
_
_
) 1 (
U grad
z
j y
i x
Gradient Operator
Trang 11Lực bảo tòan và thế năng
)
z
e y
e x
grad
Trang 12Dao động xung quanh vị trí cân bằng
bền
2 2
2
0
) (
2
1 )
( )
( )
k
x x
p e
x x
p e
p
x
x
x x
x x
e e
) (
) (
/
e
e p
x
x x
k x
m
x x
k x
F
Khai triển Taylor hàm thế năng xung quanh vị trí cân bằng:
vị trí cân bằng
2
)
.(
2
1 )
( )
0
k
k m
x x
bền k>0
ko bền k<0
Trang 130 0
) (
2 2
2
x e x p
e
x k
m k
x x
Pt chuyển động xq vị trí cân bằng
bền
Độ lệch khỏi vị trí cân bằng
Tần số dao động