1. Trang chủ
  2. » Giáo án - Bài giảng

Lecture 3 work and energy 2015

13 85 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 261,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả: Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Trang 1

Lecture 4 WORK and ENERGY

Trang 2

OUTLINE

• Work and Kinetic Energy

• The Work-Kinetic Energy Theorem

• Power

• Conservative Force-Nonconservative Force

• Potential Energy

• Mechanical Energy

• Conservation of Mechanical Energy

Trang 3

4.1 Work and Kinetic Energy

v d v m

ds dt

v

d m ds

F

s F Fs

cos 

 

2

2

1

mv

K

F=const

s

2 1

2 2

2

1 2

1

mv mv

K

W    

The work done by a constant force F on the object when it moves a straight distance s is:

In general case, the work is not constant, the path is a curve

The work done by force F when the object moves a very small displacement ds (we can consider F constant and ds a straigh linet:

2 1

2 2 2

1 2

1

2

1

v m v

m v

d v m ds

F

W

v

v

 

  

The work done by force F when the object moves from position (1) to (2) is:

We define: Kinetic Energy:



F

ds (1)

(2)

The total work done on a particle is equal to the change in its kinetic energy

Work-Kinetic Energy Theorem

Trang 4

4.2 Power

P

mv mv

P

W

t

mv mv

W

t P W

2 1

2 2

2 1

2 2

2

1 2

1 2

1 2

1

const P

if



time of

unit per

done

work Power

_ _

_

_

dt

ds F

dt

dW

 

1

t

t

Pdt dW

W

Trang 5

Conservative Nonconservative Force

work done by the force is independent on the path, it is dependent only on the

initial and final position

- Gravity and spring force are

conservative forces,while kinetic friction

is not

Trang 6

Fgrv

ds

(1)

(2)

M

m

dr

r

2

r1

 Work done by the grav force F on object m when it moves a displacement ds:

dr r

Mm G

ds F ds

F dW

dr

2

cos    

  

1 2

2

2

Mm G

r

Mm G

dr r

Mm G

W

r

r

 

Work done by the grav force F on object

m when it moves from (1) to (2)

+ Work done is independent of the path, but of the initial and final position

gravitation force is conservative

+ we define a scalar quantity called gravitational potential energy of two object sseparated by a distance r :

C r

Mm G

r

U( )   

2 2

11

/

10 67

.

Universal Graviattional Cconstant

If we choose U=  0 when r=  , we have C=0, If we choose U=0 on the

surface of Earth: C=GMm/R

U U

U

W  1  2   

We can write:

Trang 7

Conservative Forces

1 The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle

2 The work done by a conservative force on a particle moving through any closed path is zero (A closed path is one in

which the beginning and end points are identical.)

3 the work Wc done by a conservative force on an object as

the object moves from one position to another is equal to the initial value of the potential energy minus the final value

(1)

(2) (a)

(b)

U U

U ds

F ds

F W

b

c a

) 2 1 (

)

2 1 (

.

0

) (

. 

 

C

c ds F

(1)  (2)

F

ds

Trang 8

Mechanical Energy

• If an object is exerted by

Conservative Force Fc

and Nonconservative

Force Fnc,

• from the Work-Kinetic

Energy Theorem :

• Fc is conservative:

• From (1) and (2):

• Mechanical Energy:

E=K+U

nc

nc

F

F W U

K U

K

W U

U K

K

) (

)

2 1

1 2

nc

F a

) 1

(

1

2 K WF c WF nc

K

) 2

(

2

1 U U

U

W

c

nc

F

W E

E

Trang 9

Conservation of Mechanical

Energy

The change in Mechnaical energy of an object is equal to the work done by

nonconservative force on the object as it takes a path form position (1) to (2)

If Fnc= 0 or WFnc =0 =>  E=0: E=const Conservation of Mechanical Energy

nc

F

W E

E

Trang 10

Conservative Force

& Potential Energy

z

U F

y

U F

x

U F

dz z

U dy

y

U dx

x

U dU

dW

ve conservati is

F

dz F dy

F dx

F ds

F dW

k dz j

dy i

dx ds

k F j

F i

F

F

z y

x

z y

x c

z y

x





;

;

) 2 (

_

_

) 1 (

U grad

z

j y

i x

Gradient Operator

Trang 11

Lực bảo tòan và thế năng

)

z

e y

e x

grad

Trang 12

Dao động xung quanh vị trí cân bằng

bền

2 2

2

0

) (

2

1 )

( )

( )

k

x x

p e

x x

p e

p

x

x

x x

x x

e e









) (

) (

/

e

e p

x

x x

k x

m

x x

k x

F



Khai triển Taylor hàm thế năng xung quanh vị trí cân bằng:

vị trí cân bằng

2

)

.(

2

1 )

( )

0



k

k m

x x

bền k>0

ko bền k<0

Trang 13

0 0

) (

2 2

2

x e x p

e

x k

m k

x x

  

Pt chuyển động xq vị trí cân bằng

bền

Độ lệch khỏi vị trí cân bằng

Tần số dao động

Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN