1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lecture 8 the kinetic theory of gases

19 111 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 510,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Trang 1

CHAPTER 21 THE KINETIC THEORY OF

THERMODYNAMICS

Trang 2

The kinetic theory of Gases

1 The number of molecules in the gas is large, and the average separation between them is large compared with their dimensions In other words,

the molecules occupy a negligible volume in the container We model the molecules

as particles

2 The molecules obey Newton’s laws of motion, but as a whole they move randomly By “randomly,” we mean that any molecule can move in any

direction with any speed

3 The molecules interact only by short-range forces during elastic collisions

That is consistent with the ideal gas model, in which the molecules exert no

long-range forces on each other

4 The molecules make elastic collisions with the walls These collisions lead

to the macroscopic pressure on the walls of the container

5 The gas under consideration is a pure substance; that is, all molecules are identical

Trang 3

3

2 P

Pressure (N/m2)

particle density (m^-3)

Average Translational Kinetic Energy of 1 particle

KINETIC THEORY

The pressure that a gas exerts is caused by the

collisions of its molecules with the walls of the

container

We try to derive the equation that relates

the macroscopic quantity P and the

microscopic quantity of the gas – the

average Translational Kinetic Energy 

Trang 4

4

KINETIC THEORY

Consider a collection of N molecules of an ideal gas in a container of volume V=L 3 Consider molecule i of mass m, velocity vi, It collides the wall

The impulse – momentum theorem gives

x

xi particle

wall

particle wall

i i

e

mv

2 F

F

v m '

v

m

v

v’

L

2 xi particle

wall

xi

e L

mv F

v

L 2

Trang 5

mv

; L

N n

n 3

2 P

2

mv L

N 3

2 L

F P

e 3

v L

Nm F

3

v v

v v

e

v L

m N L

mv F

e L

mv F

F

e L

mv F

v

L 2

e mv 2 F

F

v m ' v m

2 3

o

o

2 3

2

wall particle

x

2 wall

particle

2 2

z

2 y

2 x

x

2 x i

2 xi wall

particle

x

2 xi particle

wall wall

particle

x

2 xi particle

wall xi

x

xi particle

wall

particle wall

i i

3

2 P

Pressure

(N/m2)

particle density (m^-3)

Average Translational Kinetic Energy of 1 particle

Trang 6

Temperature is a direct measure of

average molecular translational kinetic energy

T

k 2 3

T k

n V

T k

nN V

nRT P

n 3

2 P

B

B o

B A

o

Trang 7

Theorem of equipartition of energy

The average translational kinetic energy per molecule is

T

k 2

3 v

m 2

1 v

m 2

1 v

m 2

1 v

m 2

1

B

2 z

2 y

2 x

Each degree of freedom contributes ½ kBT to the energy

of a system

It is also right for degrees freedom associated translatioal, rotation, and vibration of molecules

Translational motion has 3 degree of freedom

Trang 8

Degree of Freedom i

6 N

3 i

; 3 i

; 3 i:

Gas Manyatomic

1 i

; 2 i

; 3 i

: Gas Diatomic

3 i

: Gas Monoatomic

n oscillatio

rotation

transl

n oscillatio

rotation

transl

transl

 

Trang 9

Internal Energy

nRT 2

i T

k

nN

2

i

U

Const Gas

Universal :

k N

R

mol of

number

:

n

nN

N

T

k 2

i N

U

particle 1

of energy particle

of number energy

Internal

B A

B A

A B

nRT 2

i

U 

Trang 10

Equation of state for an ideal gas

PV=nRT

R is called the universal gas constant R=8.31 J/(mol.K)

P pressure is expressed in pascals (1 Pa = 1 N/m2)

V volume in cubic meters

PV has units of joules

Trang 11

20.5 The First Law of Thermodynamics

The first law of thermodynamics states that when a

system undergoes a change from one state to another, the change in its internal energy is

where Q is the energy transferred into the system by heat and W is the work done on the system

Although Q and W both depend on the path taken from

the initial state to the final state, the quantity U does not depend on the path

W Q

Trang 12

Work done on the system

2

1

V

V

PdV W

PdV dy

S P s

d F

Trang 13

Appications of the 1rst Law of TD

Isothermal process of an Ideal Gas

1 2

1

2 V

V

V

V ln nRT W

Q

V

V ln nRT

dV V

nRT PdV

W

0

U

W Q

U

const PV

: const

T

2

1

  

  

Trang 14

isobaric process P=const

R 2

2

i

C

T nC

Q

T

R 2

2

i n T

nR T

nR 2

i V

P U

Q

V P Q

U

T nR V

P PdV

W

W Q

U

const T

/ V : const

P

p

p

Trang 15

isovolumetric process V=const

R 2

i C

T nC

T

R 2

i n Q

U

0 PdV

W

W Q

U

: const

V

V

V

 

Trang 16

Adiabatic process Q=0

const P

T

const TV

const T

PV

const PV

T

nR 2

i W

U

0

Q

W Q

U

1

1

Trang 17

The molar specific heat at constant volume :

The molar specific heat at constant pressure

The ratio of specific heats

R 2

i

CV 

R 2

2

i

Cp  

i

2 i C

C

V

P  

R C

C

1

R C

1

R C

V P

P

V

  

Trang 18

ADIABATIC PROCESS

Const

PV

C ln P

ln

V

ln

0 P

dP V

dV

i

2

i

0

VdP 2

i PdV

2

2

i

PdV )

VdP PdV

(

2

i

) VdP PdV

( 2

i nRdT

2

i

dU

nRdT VdP

PdV

nRT

PV

nRdT

2

i

dU

PdV

dU

0 Q : process Adiabatic

PdV Q

dU

const P

T

const TV

const T

PV

const PV

1

1



Trang 19

SUMMARY

Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN