1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Lecture 6 rotation sự quay

19 62 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 327,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp Tìa liệu biên soạn dựa trên chuẩn vật lí Châu Âu, sử dụng kí hiệu phổ biến tư trường đại học Paris technique Description: Document prestigieux compilé par la faculté de technologie de lUniversité de Ho Chi Minh Ville, propice à la séquence détude, recherche avancée en physique avancée, physique, matériaux de zéro à avancé , compléter les connaissances dexcellents étudiants en physique, recherche, formule avec notes de bas de page, joindre des documents en anglais, français La compilation est basée sur les standards de physique européens, en utilisant la technique commune de lUniversité de Paris Description: Prestigious document compiled by Ho Chi Minh City University of Technology faculty, conducive to the study sequence, advanced research in advanced physics, physics, materials from scratch to advanced , supplement the knowledge of excellent students in physics, research, formula with footnotes, attach documents in English, French The compilation is based on European physics standards, using the Paris University common technique

Trang 1

Lecture 6

ROTATION

Lecturer Tran Thi Ngoc Dung

dungttn@gmail.com

Trang 2

Rotation in Reality

• Rotational motion is all around us from

molecules to galaxies

- The earth rotates about its axis

- Wheels, gears (sự truyền động bánh răng), propellers [( chân vịt (tàu), cánh quạt (máy bay) ], motors, a CD in its player, a

pirouetting (múa xoay tròn) ice skater, all rotate

Trang 3

Outline

- Angular Velocity-Angular Acceleration

- Torque

- Equation of Rotation

- Moment of Inertia

Trang 4

O

d

d

M1(t)

Mi(t+dt)

Mi(t)

M1(t+dt)

Rigid object rotates about a fixed axis 

The trajectory of each point (except those on the axis) is a circle

a rigid body = system of particles, that the distance between any two

particles that make up the object remains fixed

During a time dt, all points move the same angle d

) /

( rad s dt

d

 

) /

( rad s 2 dt

d

 

Angular velocity

Angular Acceleration

r i : distance from ith particle Mi to the rotation axis

During a time dt, i th particle move

a distance ds i

 r d

dsi i

Angular Velocity-Angular Acceleration

Trang 5

O

d

ri

i

vi

a

in

a

The speed of the i th particle:

i i

i

dt

d r dt

ds

v   

The tangential acceleration of the ith particle :

i i

i

dt

d dt

dv

a     

The centripetal acceleration

of the ith particle :

i i

r

v

2

The acceleration of the ith particle

4 2

2

i ni i

a

Trang 6

O

 

i

v

i

a

in

a

 

The rotation is accelerated

i





i in

i i

i i

r a

r a

r v

2

O

 

i

v

i

a

in

a

 

The object rotates

counter-clockwise

i





The rotation is decelerated

Trang 7

O

  vi ain ai

 

The rotation is accelerated

i





i in

i i

i i

r a

r a

r v

2

i





The rotation is decelerated

O

  vi

i

a

in

a

 

The object rotates

clockwise

Trang 8

Torque

O

i

F

i

r

ir

FFi

//

F

Consider a force F i exerting on the object, that can rotale about a

fixed axis

t

F F

Only the tangential force can rotate the object

The torque of the Force F about a fixed point O:

F r

O F

 /  

F

/ (  / ).

The torque of the Force F about the

axis going through the point O

e

evector unit

e  : _

Trang 9

 / /

/

0

//

/

//

/

) (

) (

) (

) (

) (

//

t

F t

O F F

e rF

t r

e rF

O

F

t r

O

F

M e

rF e

e M

F r

F r

F r

F F

F r

F r

 



 



 



Only the tangential force can rotate the object

0

/

//  

F

The torque of a parallel force F // is zero

The torque of the force that has the line of

action go through the axis is zero

  /

/ Ft

F   

0

/  

r

F

Trang 10

Dynamics of Rotation

  I

) 1 (

i i it

i

F  

Let Force F i exerts on the ith particle

Force F it causes a tangential acceleration a ti

of the ith particle:

Multiply the eq(1) by r i

Torque of F i about the rotation axis

i

ti r

a

) 2 (

2

i i it

iF m r

) ' 2 (

2

imiri

) 3 ( )

( 2 

 

i

i i i

: the net torque acting on the object:

I: Moment of Inertia

i

i i i

i I m r2

Summing over all the particles in the object

(Angular acceleration is the same for all the

particles of the object and can therefore be

taken out of the sum )

Equation of Rotation

Trang 11

Moment of Inertia

object) continuous

(

particles) of

system (

2

2

dm

r

I

r m

I

i

i

from the rotation axis

r is the distance of the mass element dm from the rotation axis

m1

r1

mi

ri

mN

r1

dm

r

Trang 12

Moment of Inertia

of Homogenous Rigid Objects about the axis through the Center of Mass

R

2

2

1

mR

I CM

Solid cylinder/disk

R

Hoop or thin cylindrical shell

2

mR

I CM

Solid sphere

2

5

2

mR

I CM

R

R1

R2

) (

2

2

2

1 R R m

Hollow cylinder

Thin spherical shell

2

3

2

mR

I CM

R

CM

L

Thin rod

2

12

1

mL

I CM

L

Thin rod

2

3

1

mL

I 

a

b

Sheet

) (

12

1 2 2

b a m

Trang 13

The Parallel-Axis Theorem

2

I

The moment of inertia about an axis is equal to the sum of moment

of inertia about an axis through the center of mass I cm and Md 2

d : distance between through parallel axes and cm

CM

2 2

2 2 2

2

3 2

1

, 2

1

mR mR

mR I

R d

mR I

md I

I

CM

CM

Trang 14

Kinetic Energy of Rotation

2

2

1

i i

2 2

2 2 2

2

1 2

1 2

1

i

i i i

i i i

i i i

i

K

The kinetic energy of a rotating object is the sum of the kinetic energies of the individual particle s in t he object

The kinetic energy of a mass element mi is

Summing over all the elements and using vi = riω gives

2

2 1

Trang 15

Example 2

A 4-kg block resting on a frictionless horizontal ledge is attached to a

string that passes over a pulley and is attached to a hanging 2-kg block (Figure 9-45 ) The pulley is a uniform disk of radius 8 cm and mass 0.6

kg (a) Find the speed of the 2-kg block after it falls from rest a distance of 2.5 m (b) What is the angular velocity of the pulley at this time?

Example 1

Two blocks are connected by a string that passes over a pulley of radius

R and moment of inertia I The block of mass m1 slides on a frictionless, horizontal surface; the block of mass m2 is suspended from the string Find the acceleration a of the blocks and the tensions T 1 and

T 2 assuming that the string does not slip on the pulley

Example 2

A uniform thin stick of le ngth L and mass M is pivoted at one end It is held horizontal and released ( Figure 9-24) Assume the pivot is

frictionless Find (a) the angular acceleration of the stick immediately

after it is released, and (b) the force F0 exerted on the stick by the pivot

at this time.

Trang 16

Example1

Two blocks are connected by a string that passes over a pulley of radius

R and moment of inertia I The block of mass m1 slides on a frictionless, horizontal surface; the block of mass m2 is suspended from the string Find the acceleration a of the blocks and the tensions T 1 and

T 2 assuming that the string does not slip on the pulley

1

2

1

2

P 2

P 1

N T 1 T’ 1

T’ 2

T 2

+ m1 moves right + m2 moves down + Pulley rotates clockwise + The magnitude of acceleration :a1 = a2 = a + The mqgnitude of the tensions:T1 = T’1 , T2 = T’2

Trang 17

1

2

P 2

P 1

N T 1 T’ 1

T’ 2

T 2

) 4 (

) 3 (

) 2 (

) 1 (

2 2

2 2

1 1

1

2 2

2 2

1 1

1 1

T g m a

m

T a

m

T P

a m

T N

P a

m

Applying Newton’s 2nd law and projecting (1) and (2) on the direction of motion :

Equation of rotation of pulley I   T2'RT1'R ( 5 )

Retionship between a and  a   R ( 6 )

) 7 (

' 1

' 2

R

a

R

I m

2 2

  

2 2

1

2

/ R

I m m

g m a

2 2

1

2 1 1

1 1

/ R

I m m

g m m a

m T

(3)

R I m

m

R I m a

m g m

2 2

1

2 1

2 2

2

/

/

Trang 18

Example 2

A uniform thin stick of le ngth L and mass M is pivoted at one end It is

held horizontal and released ( Figure 9-24) Assume the pivot is

frictionless Find (a) the angular acceleration of the stick immediately

after it is released, and (b) the force F o exerted on the stick by the pivot

at this time.

P

CM

F o

Applying the Newton’s 2nd law for the CM gives:

) 1 (

o

cm mg F

2

L mg

I 

2 3

1

mL

I 

2 3

mg

2

s

rad L

g

mg ma

mg

4

1

g

L

acm

4

3

2 

 

(1)

Remark Just after the

stick is released, the

pivot exerts an upward

force equal to

one-fourth the weight of t he

stick

Trang 19

Ex 3 A 4-kg block resting on a frictionless horizontal ledge is attached to

a string that passes over a pulley and is attached to a hanging 2-kg block The pulley is a uniform disk of radius 8 cm and mass 0.6 kg (a) Find the speed of the 2-kg block after it falls from rest a distance of 2.5 m (b) What

is the angular velocity of the pulley at this time?

1

2

P 2

P 1

T’ 2

T 2

2 2

1

2

/ R

I m

m

g m a

v

v o 2

0

2

2  

From Ex 9-7

The motion of m 2 is linear with constant acceleration

as

The speed

Ngày đăng: 06/01/2018, 13:54

TỪ KHÓA LIÊN QUAN

w