1. Trang chủ
  2. » Giáo án - Bài giảng

Giao an 10

82 131 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giáo án giảng dạy hình học (chương trình nâng cao)
Trường học Câu Lạc Bộ Tacke
Chuyên ngành Hình Học
Thể loại Giáo án
Định dạng
Số trang 82
Dung lượng 1,7 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chỉ ra trên hình vẽ các vectơ có điểm đầu, điểm cuối không trùng nhau lấy trong cá c -Phát biểu lại định nghĩa vectơ, hai vectơ - Giúp học sinh hiểu vssf kí hiệu vectơ Bài tập về nhà: Ch

Trang 1

Giáo án giảng dạy hình học

Biết xác định điểm đầu và điểm cuối của vectơ; giá, phơng, hớng của véctơ

3 Về t duy : Rèn luyện t duy logic và trí tởng tợng trong không gian.

4 Về thái độ :

Cẩn thận, chính xác trong lập luận

II Chuẩn bị của thầy và trò:

1 Chuẩn bị của thầy :

- Nghiên cứu tài liệu, soạn giáo án

- Dạy học phát hiện và giải quyết vấn đề thông qua các hoạt động điều khiển t duy

- Chia nhóm học tập( Chia lớp thành 4 nhóm học sinh theo địa lý)

IV Tiến trình bài học:

1 ổn định tổ chức lớp

2 Bài mới:

Hoạt động 1: Tiếp cận kiến thức.

- Phát hiện vấn đề mới: Với hai điểm

cho trớc có hai hớng khác nhau

- Cho học sinh quan sát hình vẻ 1 SGK

- Nêu câu hỏi dới dạng ví dụ:

Một ngời đi từ điểm A tới điểm B và ngời khác

đi ngợc lại Vẻ sơ đồ biểu thị chuyển động của mỗi ngời

- Giáo viên giúp học sinh hiểu đợc: có sự khác nhau cơ bản giữa hai chuyển động

- Biểu thị điều nhận biết của học sinh

Trang 2

Cau lac bo Tacke

Hoạt động 2: Hình thành định nghĩa vectơ và tên gọi.

- Phát biểu điều cảm nhận đợc

- Tiếp nhận tri thức mới

- Ghi nhớ các tên gọi và kí hiệu

- Ghi nhận tri thức mới

- Bớc đầu vận dụng kiến thức thông

qua ví dụ

- Yêu cầu học sinh phát biểu điều cảm nhận đợc

- Chính xác hoá và hình thành khái niệm vectơ

- Yêu cầu học sinh ghi nhớ các tên gọi, kí hiệu

- Hình thành khái niệm vectơ không

- Lấy ví dụ: Cho 3 điểm phân biệt A, B, C phân biệt không thẳng hàng Hãy đọc tên các vectơ có

điểm đầu, điểm cuối lấy trong các điểm đã cho

Hoạt động 3: Hai vectơ cung phơng, cùng hớng

- Ghi nhận kiến thức về giá của vectơ

- Phát hiện vị trí tơng đối về giá của các cặp

vectơ trong hình 3 SGK

- Phát hiện đợc các vectơ có giá song song

hoặc trùng nhau, các vectơ có giá không

song song

- Phát hiện tri thức mới

- Phát biểu điều phát hiện đợc và ghi nhận

kiến mới về hai vectơ cùng phơng

- Ghi nhận kiến thức mới về hai vec tơ cùng

hớng, ngợc hớng

- Nêu khái niệm giá của vectơ

- Cho học sinh quan sát hình vẽ 3 SGK và cho nhận xét về vị trí tơng đối về giá của các cặp vectơ đó

- Yêu cầu học sinh phát hiện các vectơ có giá song song hoặc trùng nhau, các vectơ

có giá không song song( hình vẽ ở bảng phụ)

- Giới thiệu về vectơ cùng phơng (trên bảng phụ)

- Giới thiệu hai véctơ cùng hớng, ngợc ớng( trên bảng phụ)

h-Hoạt động 4: áp dụng

Ví dụ 1: Các mệnh đề sau mệnh đề nào đúng, mệnh đề sai Giải thích?

1> Hai vectơ đã cùng phơng thì phải cùng hớng (nhóm 1)

2> Hai vectơ đã cùng hớng thì phải cùng phơng.(nhóm 2)

3> Hai vectơ đã cùng phơng với vectơ thứ 3 thì phải cùng hớng ( nhóm 3)

4> Hai vectơ đã ngợc hớng với véctơ thứ 3 thì phải cùng hớng (nhóm 4)

Ví dụ 2: Cho tam giác ABC có M, N, P theo thứ tự là trung điểm của các cạnh BC, CA,

AB Chỉ ra trên hình vẽ các vectơ có điểm đầu, điểm cuối( không trùng nhau) lấy trong cá c

- Đại diện mỗi nhóm lên trình bày kết quả

-Phát phiếu học tập và yêu cầu học sinh làm, đa ra kết quả theo nhóm

- Theo dõi hoạt động học sinh theo nhóm, giúp đỡ khi cần thiết

Trang 3

-Phát biểu lại định nghĩa vectơ, hai vectơ

- Giúp học sinh hiểu vssf kí hiệu vectơ

Bài tập về nhà: Cho hình bình hành ABCD, O là giao điểm của hai đờng chéo, M, N lần

l-ợt là trung điểm của AB, BC Chỉ ra trên hình vẽ các vec tơ có điểm đầu, điểm cuối lấy trong các điểm đã cho mà:

Biết cách xác định véc tơ tổng, vận dụng các quy tắc cộng véctơ

7 Về t duy : Rèn luyện t duy logic và trí tởng tợng trong không gian.

8 Về thái độ :

Cẩn thận, chính xác trong lập luận

II Chuẩn bị của thầy và trò:

4 Chuẩn bị của thầy :

- Nghiên cứu tài liệu, soạn giáo án

- Dạy học phát hiện và giải quyết vấn đề thông qua các hoạt động điều khiển t duy

- Chia nhóm học tập( Chia lớp thành 4 nhóm học sinh theo địa lý)

Trang 4

Cau lac bo Tacke

IV Tiến trình bài học:

1 ổn định tổ chức lớp

2 Bài mới:

Hoạt động 1: Hình thành định nghĩa phép cộng vectơ

- Quan sát hình vẽ 8-9 SGK

- Đọc câu hỏi và hiểu nhiệm vụ

- Phát hiện hớng tịnh tiến theo →

AC

- Phát hiện vấn đề mới: Với hai điểm

cho trớc có hai hớng khác nhau

- Phát biểu Đ/n

- Cho học sinh quan sát hình vẻ 8-9 SGK

- Nêu câu hỏi : Vật có thể tịnh tiến một lần từ vị trí (I) đến (III) đợc không? Nếu có thì tịnh tiến theo véc tơ nào?

- Giáo viên kết luận về véc tơ →

AC là tổng của hai véc tơ

- Cho học sinh định nghĩa phép cộng hai véc tơ

- Chính xác hoá Đ/n

Hoạt động 2: Cũng cố phép cộng hai véc tơ.

a) b)

- Vẽ HBH ABCD, O là giao điểm của hai đờng chéo Hãy phân tích →

AB thành tổng của hai véc tơ?

Hoạt động 3: Xây dựng các tính chất của phép cộng véc tơ

- Ghi nhận kiến thức về giá của vectơ

- Phát hiện vị trí tơng đối về giá của các cặp

vectơ trong hình 3 SGK

- Phát hiện đợc các vectơ có giá song song

hoặc trùng nhau, các vectơ có giá không

song song

- Phát hiện tri thức mới

- Phát biểu điều phát hiện đợc và ghi nhận

kiến mới về hai vectơ cùng phơng

- Ghi nhận kiến thức mới về hai vec tơ cùng

Trang 5

5> Hai vectơ đã cùng phơng thì phải cùng hớng (nhóm 1)

6> Hai vectơ đã cùng hớng thì phải cùng phơng.(nhóm 2)

7> Hai vectơ đã cùng phơng với vectơ thứ 3 thì phải cùng hớng ( nhóm 3)

8> Hai vectơ đã ngợc hớng với véctơ thứ 3 thì phải cùng hớng (nhóm 4)

Ví dụ 2: Cho tam giác ABC có M, N, P theo thứ tự là trung điểm của các cạnh BC, CA,

AB Chỉ ra trên hình vẽ các vectơ có điểm đầu, điểm cuối( không trùng nhau) lấy trong cá c

-Phát biểu lại định nghĩa vectơ, hai vectơ

- Giúp học sinh hiểu vssf kí hiệu vectơ

Bài tập về nhà: Cho hình bình hành ABCD, O là giao điểm của hai đờng chéo, M, N lần

l-ợt là trung điểm của AB, BC Chỉ ra trên hình vẽ các vec tơ có điểm đầu, điểm cuối lấy trong các điểm đã cho mà:

Trang 6

Cau lac bo Tacke

1 Về kiến thức: Học sinh cần nắm đợc:

- Khái niệm véc tơ đối, hiệu của hai véc tơ

- Cách tìm vectơ đối và cách dựng hiệu của hai véc tơ

- Cẩn thận chính xác, thấy đợc toán học có ứng dụng trong thực tiễn

II Chuẩn bị của Giáo viên và Học sinh.

1 Về thực tiễn:

- Học sinh đã đợc học khái niệm vec tơ, tổng của hai vec tơ và các kiến thức hìnhhọc cấp THCS

2 Chuẩn bị của thầy:

- Nghiên cứu tài liệu, soạn giáo án

- Dạy học phát hiện và giải quyết vấn đề thông qua các hoạt động điều khiển t duy

IV Tiến trình bài học.

1 ổn định tổ chức lớp:

2 Kiểm tra bài cũ:

Nội dung kiểm tra

Câu hỏi 1: Nêu định nghĩa tổng của hai vec tơ, quy tắc 3 điểm, quy tắc hình bình hành? Câu hỏi 2: Cho OA a OB buuur r uuur r= ; = Hãy dựng véc tơ OA BOuuur uuur+ ?

3 Bài mới:

Hoạt động 1- Định nghĩa vectơ đối.

Trang 7

- Thảo luận, so sánh với thực tiễn để đa

- Chính xác hoá và ghi nhớ khái niệm

- Liên hệ với thực tế để đa ra ví dụ cụ thể

- Căn cứ theo định nghĩa để đa ra câu trả

lời

*Nhận biết khái niệm:

VD1: Cho hai lực uur uurF F1; 2

có cùng độ lớn tác dụng ngợc chiều lên cùng một vật trên mặt phẳng nằm ngang Hỏi vất đó sẽ dịch chuyển về phía nào?

Kết luận: Vật đứng yên Tổng

F +F =

uur uur r

VD2: Cho hình bình hành ABCD Hãy

nhận xét về độ dài và hớng của 2 vec tơ

Ví dụ: Cho hình bình hành ABCD tâm O.

Hãy chỉ ra các cặp vectơ đối có thể xác

định từ hình bình hành nói trên?

Hoạt động 2- định nghĩa hiệucủa hai vectơ

- Căn cứ định nghĩa vectơ đối và tổng của

hai vectơ để đa ra kết quả

*Nhận biết khái niệm:

Từ câu hỏi 2 phần kiểm tra bài cũ: Hãy

xác định véc tơ đối của véc tơ BOuuur?

Xác định tổng của OAuuurvà vectơ đối của

BO

uuur

?

* Thông báo khái niệm: BAuuurgọi là hiệu

của hai vectơOAuuurvà OBuuur

Trang 8

Cau lac bo Tacke

- Trình bày khái niệm hiệu hai vec tơ

theo ý hiểu

- Chính xác hoá và ghi nhớ khái niệm

- Ghi nhớ quy tắc 3 điểm và phát biẻu

đ-ợc bằng ngôn ngữ

- áp dụng quy tắc 3 điểm phân tích thành

hiệu các vectơ để chứng minh

- Chứng minh và ghi nhớ kết quả

*Định nghĩa khái niệm: Em hiểu thế nào

là hiệu 2 vectơ?

*Chính xác khái niệm:

GV chính xác khái niệm theo SGK

* Củng cố khái niệm:

- Với 3 điểm O, A, B bất kì hãy phân tích

vectơ ABuuurthành hiệu của hai vectơ có chung gốc O?

Ví dụ1: Với 4 điểm bất kì A, B, C, D

chứng minh rằng:

a AB AC CBuuur uuur uuur− =

b AB CD AD CBuuur uuur uuur uuur+ = +

- Lu ý các cách chứng minh khác

Ví dụ 2: Chứng minh rằng AB CDuuur uuur= khi

và chỉ khi trung điểm của hai đoạn thẳng

AD và BC trùng nhau:

Hoạt động 3 – Hoạt động củng cố.

Giáo viên nhấn mạnh cho học sinh:

+ Định nghĩa và cách xác định véc tơ đối của một véc tơ

+ Định nghĩa và cách dựng hiệu của 2 véctơ

+ Kĩ năng phân tích một vectơ thành hiệu của các vectơ

Bài tập về nhà:

Bài tập 1: Chứng minh sự tồn tại và duy nhất của vectơ đối của vectơ ar

Bài tập 2: Cho sáu điểm A, B, C, D, E, F chứng minh rằng

AD BE CF AE BF CD AF BD CEuuur uuur uuur uuur uuur uuur uuur uuur uuur+ + = + + = + +

Tiết 6-7-8-9 : Đ4 tích của một véc tơ với một số

- Định nghĩa: Tích của một véctơ với một số và các tính chất

- Các tính chất trung điểm, trọng tâm tam giác, điều kiện để 2 véctơ cùng phơng, 3 điểmthẳng hàng

- Phơng pháp: Biểu thị 1 véctơ theo 2 véctơ không cùng phơng

2 Về kỹ năng.

- Hiểu và vận dụng đợc định nghĩa tích của một véctơ với một số và các tính chất

Trang 9

- Vận dụng một số tính chất về trung điểm, trung tuyến, trọng tâm tam giác.

- Biết cách biểu thị một véctơ qua 2 véctơ cùng phơng

Chủ yếu là vấn đáp gợi mở và chia nhóm hoạt động

IV) Tiến trình bài dạy

1 ổn định lớp: Chia lớp thành 3 nhóm

2 Kiểm tra bài cũ

3 Tiến trình bài mới

Hoạt động 1: Tìm hiểu nhiệm vụ

Câu hỏi 1: cho ∆ABC đều cạnh a G là trọng tâm Độ dài của véctơ:

(phục vụ để kiểm tra bài cũ)

Bài tập 1: Cho ∆OAB vuông cân có OA = OB = a

Hãy chứng dựng các véctơ sau và tính độ dài của chúng

Trang 10

Cau lac bo Tacke

Bài tập 3: Cho ∆ABC và điểm G CMR:

a) Nếu GA+GB+GC = 0 thì G là trọng tâm ∆

b) Nếu ∀0: 3OG =OA+OB+OC thì G là trọng tâm

c) Lấy A', B', C': GA' =k GA, GB' =k GB, GC' =k GC Chứng minh : nếu

0 ' '

' +GC +GC =

GA thì G là trọng tâm ∆A'B'C'

Hoạt động 2: Học sinh độc lập trả lời câu hỏi 1 dới sự quan sát của giáo viên

- Nhận câu hỏi và các phơng án trả lời

Hoạt động 2: Học sinh độc lập giải bài tập 1, giáo viên tổ chức, điều khiển

- Nhận đề, thảo luận và tiến hành giải

- Đánh giá, nhận xét, chỉnh sửa, chú ý lỗithờng gặp

- chính xác lời giải

Hoạt động 3: Học sinh độc lập tiến hành giải bài tập 2 có sự hớng dẫn, điều khiển của giáoviên

- Nhận đề, thảo luận theo nhóm và độc

lập tiến hành giải toán - Giao nhiệm vụ cho từng nhóm, theodõi, định hóng khi cần

A

Trang 11

Hoạt động của học sinh Hoạt động của giáo viên

- Phân tích đề: Cần sử dụng các công cụ

nào? Quy tắc chèn điểm phép trừ, tính

chất trọng tâm tam giác, 2 véctơ cùng

h-ớng

- Thông báo kết quả

- Chính xác lời giải

- Ghi kết quả vào vở

Lời giải cụ thể:

- Yêu cầu đại diện nhóm trình bày lờigiải

- Đánh giá, sửa chữa, chú ý các sai lầmthờng gặp

- Chính xác kết quả

- Chú ý cách giải khác

Lời giải bài tập 3:

Câu a: Cách 1: Gọi I là trung điểm của BC

A

IG

Trang 12

Cau lac bo Tacke

Ta có 3OG' =OA+OB+OC = 3OG → G≡G'

Câu c: GA' +GB' +GC' =k(GA+GB+GC) = 0

⇒ G là trọng tâm ∆A'B'C'

4 Cũng cố:

Viết mệnh đề tơng đơng: Điền vào dấu

1) I là trung điểm của AB ↔

2) GA+GB+GC = 0 ↔

3) Nếu ma+ b= 0 thì

(với m,n∈R, a, b bất kỳ) Bài tập về nhà: Bài tập 26, 27, 28 (SGK hình học 10 nâng cao) Tiết 10-11-12: Đ5 trục toạ độ và hệ trục toạ độ

Giáo viên: Ngày soạn I mục tiêu: 1) về kiến thức:học sinh nhớ lại những kiến thức của tiết 1,2 và hiểu đợc toạ độ điểm, toạ độ trung điểm của đoạn thẳng và toạ độ trọng tâm tam giácc 2) Về kỷ năng: Rèn luyện kỷ năng vận dụng vào các hoạt động củng cố và bài tập 3)về t duy:Bớc đầu hiểu đợc sự chuyển đổi giửa hình học vàhệ toạ độ. 4) Về thái độ: Cẩn thận, chính xác II Chuẩn bị phơng tiện dạy học. Chuẩn bị biểu bảng, hình vẽ, + Soạn giáo án, Tập phiếu trả lời

+Bảng kết quả

+ Máy chiếu

III Phơng pháp dạy học

+Dùng phơng pháp vấn đáp gợi mở

+Hoạt động nhóm

IV Tiến trình bài học và các hoạt động.

1.ổn định tổ chức Chia lớp học thành 4 nhóm

2 Kiểm tra bài cũa.Nêu định nghĩa toạ độ véctơ với hệ toạ độ? (cho 1 HS nhắc lại ĐN

đó)

3) Bài mới

Hoạt động 1:Hoạt động hình thành toạ độ điểm

Giáo viên định nghĩa toạ độ của một điểm trên hệ trục toạ độ

Trang 13

Hoạt động 2:Củng cố toạ độ véctơ , toạ độ điểm.

Cho A(-4;3) B(1;2) C(0;-3) D (5;0)

Tìm toạ độ các véctơ AB ; AC; BD ; CD

Hoạt động của học sinh Hoạt động của Giáo viên

-Đọc đề bài và nghiên cứu cách giải

- Độc lập tiến hành giải toán

-Thông báo kết quả cho GV khi hoàn

thành nhiệm vụ

-Chính xác hoá KQ vào vở

.Giao nhiệm vụ cho HS (nhóm 1 tìm toạ độ AB nhóm 2 tìm toạ độ AC nhóm 3 tìm toạ độ BD, nhóm 4 tìm toạ độ CD và theo dõi hoạt động của HS

-Đánh giá, sửa chữa KQ hoàn thànhcủa từng nhóm

-Kết luận tổng quát

Hoạt động3 :Hoạt động hình thành công thức trung điểm của một đoạn thẳng

Ví dụ :Trong mặt phẳng toạ độ õy cho M(xM;yM) ;N( xN;yN) Gọi P là trung điểm của

đoạn MN

a) Hãy Biểu thị véc tơ OP qua hai véctơ OM và ON

b)Từ đó hãy tìm toạ độ của điểm P theo toạ độ của M và N

Hoạt động của học sinh Hoạt động của Giáo viên

-Đọc đề bài và nghiên cứu cách giải

- Cả lớp tiến hành giải toán

-Thông báo kết quả cho GV khi hoàn

-Đánh giá KQ hoàn thànhcủa từng HS-Nêu công thức tổng quát tìm toạ độ trung điểm MN

Hoạt động 4: Hoạt động củng cố lý thuyết:

Vídụ trong mặt phẳng toạ độ Oxy cho A(2;0) B(1;2) C(-3;4)

a) Chứng minh 3 điểm A,B,C là 3 đỉnh của một tam giác

b) Viết hệ thức liên hệ giữa các véctơ OA, OB, OC và OG => Toạ độ trọng tâmc) Tìm điểm D để tứ giác ABCD là hình bình hành

d)Tìm toạ độ điểm M/ đối xứng với A qua B

Hoạt động của học sinh Hoạt động của Giáo viên

Đọc đề bài đợc giao và nghiên cứu

cách giải

- Độc lập tiến hành giải toán

-Thông báo kết quả cho GV khi hoàn

-Đánh giá, sửa chữa KQ hoàn

Trang 14

Cau lac bo Tacke

-Chú ý cách giải khác thànhcủa từng nhóm

-Kết luận tổng quát

-Nhận xét, hoàn thành KQ-Đa ra cách giải ngắn gọn nhất

Hoạt động 5 : Hoạt động ứng dụng làm bài tập34 (SGK trang 31)

Hoạt động của học sinh Hoạt động của Giáo viên

Đọc đề bài đợc giao và nghiên cứu

cách giải

- Độc lập tiến hành giải toán

-Thông báo kết quả cho GV khi hoàn

thành nhiệm vụ

-Chính xác hoá KQ vào vở

-Chú ý cách giải khác

- Ghi đề lên bảng-Giao nhiệm vụ cho HS (nhóm 1 làm câu a, nhóm 2 làm câu b, nhóm 3,4 làm câu c ) và theo dõi hoạt động của HS

-Đánh giá, sửa chữa KQ hoàn thànhcủa từng nhóm

-Kết luận tổng quát

-Nhận xét, hoàn thành KQ-Đa ra cách giải ngắn gọn nhất

Hoạt động 6:Củng cố kiến thức của bài

Câu hỏi a) Phát biểu btoạ độ véctơ, toạ độ điểm

b) Các tính chất về toạ độ véctơ, toạ độ điểm

Câu 2 Trong mặt phẳng Oxy cho tam giác ABC có G là trọng tâm Biết rằng A (-1;4) ; B 92;5) ; G (0;7) .Hỏi toạ độ của điểm C là cặp số nào?

- Các phép toán về toạ độ của vectơ và của điểm

- Chuyển đổi hiònh học tổng hợp – vectơ - toạ độ

2 Về kỹ năng:

- Thành thạo các phép toán về vectơ

- Biết cách chuyển đổi giữa hình học tổng hợp – toạ độ – vectơ

3 Về t duy:

- Hiểu đợc ứng dụng của vectơ vào Vật lý

Trang 15

- Bớc đầu nắm đợc viẹc đại số hoá hình học

- Hiểu đợc cách chuyển đổi giữa hình học tổng hợp – toạ độ – vectơ

4 Về thái độ:

- Hiểu đợc ” nét đep” biến hoá của các diễn đạt hình học

- Hình thành mối liên hệ giữa hình học tổng hợp – toạ độ - vectơ

II Chuẩn bị của thầy và trò:

- Chuẩn bị biểu bảng

- Chuẩn bị máy chiếu

- Chuẩn bị đề bài để phát cho học sinh

III Phơng pháp dạy học:

- Gợi mở, vấn đáp

- Chia nhóm học tập

IV Tiến trình bài học:

1 Kiểm tra bài cũ: Lồng vào trong quá trình làm bài tập.

2 Bài mới:

Hoạt động 1: Ra đề bài tập.

1> Hãy hoàn thiện các mệnh đề sau để đợc mệnh đề đúng dựa vào tính chất của vectơ

a M là trung điểm của BC khi và chỉ khi…

b G là trọng tâm của tam giác ABC khi và chỉ khi…

c D là chân đờng phân giác trong của góc A của tam giác ABC khi và chỉ khi…

d I là tâm đờng tròn ngoại tiếp tam giác ABC khi và chỉ khi…

2> Cho G là trọng tâm của ∆ABC Trên cạnh AB lấy hai điểm M và N sao cho

GC, , , 3> Cho M(1; 1); N(7; 9); P(5; -3) lần lợt là trung điểm của các cạnh BC, CA, AB của tam giác ABC

a Tìm toạ độ các đỉnh A, B, C và toạ độ trọng tâm G của ∆ABC?

b Xác định toạ độ điểm T là giao điểm của đờng thẳng chứa cạnh AB của ∆ABC vớitrục Oy?

c Xác định toạ độ diểm D là chân đờng phân giác trong kẻ từ đỉnh A của ∆ABC ?

d Xác định toạ độ diểm I là tâm đờng tròn ngoại tiếp ∆ABC?

- Phát đề bài cho học sinh

Trang 16

Cau lac bo Tacke

Hoạt động 2: Giải bài tập 1

- Đọc đề và thảo luận nhóm

tìm lời giải

- Thông báo kết quả khi GV

yêu cầu và nhận xét lời giải

của bạn

- Chính xác hoá kết quả( Ghi

lời giải của bài toán)

- Giao nhiệm vụ và theo dõi hoạt động của học sinh, hớng dẫn khi cần thiết

+ Nhóm 1: làm ý a

+ Nhóm 2: làm ý b

+ Nhóm 3: làm ý c

+ Nhóm 4: làm ý d

- Yêu cầu học sinh thông báo kết quả bài toán sau

đó GV nhận xét và chính xác hoá lời giải

- Chiếu lời giải chi tiết cho học sinh

- đinh hớng cho học sinh cơ sở để giải các bài tập tiếp theo

Hoạt động 3: Giải bài tập 2.

- Suy nghĩ tìm lời giải

- Trình bày lời giải khi GV yêu cầu

và nhận xét lời giải của bạn

- Chính xác hoá kết quả( Ghi lời

giải của bài toán)

- Yêu cầu học sinh giải bài tập, GV hớng dẫnkhi cần thiết

- Yêu cầu học sinh giải xong sớm nhất trình bày lời giải, nhận xét và chính xác hoá lời giải

- Chiếu lời giải chi tiết cho học sinh

Hoạt động 4: Giải bài tập 3.

Hoạt động của học sinh Hoạt động của giáo viên

- Đọc đề và thảo luận nhóm tìm lời

giải

- Thông báo kết quả khi GV yêu

cầu và nhận xét lời giải của bạn

- Chính xác hoá kết quả( Ghi lời

giải của bài toán)

- Tìm hiểu và giải quyết ý tiếp theo

- Giao nhiệm vụ và theo dõi hoạt động của học sinh, hớng dẫn khi cần thiết

- Chiếu lời giải chi tiết cho học sinh

Hoạt động 5: Thành lập bảng chuyển đổi giữa hình học tổng hợp – toạ độ – vectơ.

2 Điểm M là trung điểm của 1 → → →

= +MB 0

MA A(x1;y1), B(x2;y2),

Trang 17

2 1

y y y

x x x

A(x1;y1), B(x2;y2), C(x3;y3), G(x;y)

=

++

=

2

2

3 2 1

3 2 1

y y y y

x x x x

1 Hoàn thành các câu còn lại

2 Tự hoàn thiện bảng chuyển đổi giữa hình học tổng hợp – vectơ - toạ độ

3 Cho A(0; 6), B(6; 0), C(3; 0)

a> Tìm toạ độ điểm J là trọng tâm của tam giác ABC

b> Tìm toạ độ điểm E của đờng thẳng chứa cạnh AB của tam giác ABC với trục Ox.c> Một đờng thẳng d bất kỳ song song với trục Ox cắt AB, AC lần lợt tại P, Q Gọi M,

N lần lợt là hình chiếu của P, Q trên Ox Gọi E là giao điểm của PN với QM Gọi D

là trung điểm của OA Gọi F là trung điểm của BC Chứng minh rằng: D, E, F thẳng hàng

Tiết 14 : kiểm tra ch ơng I

Trang 18

Cau lac bo Tacke

Sự nhận biết, thông hiểu và vận dụng các kiến thức: Định nghĩa vectơ, các phép toán

về vectơ và hệ trục toạ độ

2 Về kĩ năng

Vận dung các biểu thức định nghĩa, các phép toán về vectơ và hệ trục toạ độ , kỹ năngbiến đổi suy luận

3 Về t duy, thái độ

Thái độ làm bài nghiêm túc, cẩn thận, chính xác

II Chuẩn bị của giáo viên.

Ma trận đề, đề và đáp án

III Chuẩn bị của học sinh

Giấy kiểm tra

4.0 Tích của một vectơ

với một số

1 1.0 1 1,0 1 0.5 3

2.5 Trục toạ độ và hệ

trục toạ độ

1 0.5 1 1.0 1 1.0 3

2.5 Tổng 4 2.5 6 4.5 4 3.0 14 10.0

B Đề bài:

I Trắc nghiệm khách quan

Câu 1: Hai vectơ bằng nhau nếu chúng

A Cùng hớng B Cùng phơng C Cùng độ dài D Các kết quả trên đều sai

Trang 19

Câu 2: Cho 3 điểm A, B, C phân biệt thẳng hàng ABuuur và AC cùng hớng khi:

A A nằm giữa B và C B A nằm ngoài đoạn BC C A và B đều sai

Câu 3: AB BC CAuuur uuur uuur+ + bằng

A ACuuur B 0r C CBuuur D Các kết quả trên đều sai

Câu 4: AB DC BCuuur uuur uuur− + bằng

Câu 5: Cho hình bình hành ABCD với tâm O Tổng OA OB OCuuur uuur uuur+ + là:

A ACuuur B ACuuur C DOuuur D Cả A, B, C đều sai

Câu 6: Cho hình bình hành ABCD Hiệu hai vectơ AB BCuuur uuur− là:

A ACuuur B DBuuur C ADuuur D Cả A, B, C đều sai

Câu 7: Cho tam giác ABC biết A(1; 2), B(2; 3), C(3; -2) Toạ độ trọng tâm của tam giác ABC là:

Câu 8: Cho tam giác ABC và điểm M thỏa mãn MA 2MB 0uuur+ uuur r= Biểu thị CMuuuur theo hai

vectơ CA,CBuuur uuur nh sau:

II Tự luận.

Câu 1: Cho tam giác ABC Các điểm M, N, P lần lợt là trung điểm các cạnh AB, BC, CA

a Phân tích AMuuuur theo BAuuur và BCuuur

b CMR: AN BP CM 0uuur uuur uuuur r+ + =

Câu 2: Cho bốn điểm A(1; 2), B(2; 3), C(3; -2) và D(0; 4)

a CMR: 3 điểm A, B, C không thẳng hàng

b Xác định tọa độ điểm M sao MA MB 2MD 4MCuuur uuur+ + uuuur= uuur

c Gọi G là trọng tâm của tam giác ABC Tìm tọa độ điểm E để tứ giác CDEG là hình bình hành

Tiết 15-16: Đ1 giá trị l ợng giác của một góc bất k ỳ

Giáo viên:

Ngày soạn:

Trang 20

Cau lac bo Tacke

Tiết 17-18-19: Đ2 tích vô h ớng của hai véc t ơ

Giáo viên:

Ngày soạn:

I- mục tiêu:

1 Về kiến thức : Qua bài học sinh cần nắm đợc.

- Khái niệm góc giữa hai véctơ

- Định nghĩa, tính chất của tích vô hớng của hai véctơ

- Biểu thức toạ độ của tích vô hớng

- Một số ứng dụng của tích vô hớng

2- Về kỹ năng: Qua bài học sinh cần

- Xác định đợc góc giữa hai véctơ

- Biết cách tính tích vô hớng của hai véctơ

- Bớc đầu vận dụng các tính chất của tích vô hớng vào giải các bài toán

3- Về t duy: Qua bài học sinh cần hiểu đợc định nghĩa tích vô hớng của hai véctơ, biết

suy luận ra trờng hợp đặc biệt và một số tính chất

4- Về thái độ:

- Cẩn thận chính xác

- Tích cực xây dựng bài một cách tự nhiên

II- Chuẩn bị phơng tiện dạy học:

- Thực tiễn học sinh đã đợc học trong vật lý khái niệm công sinh ra bởi lực và côngthức tính công theo lực, tỉ số lợng giác của góc bất kỳ

Trang 21

HS: Bài toán không giải đợc vì giả thiết cha cho biết hớng chuyển động của mỗi tàu.

GV Nhận xét: Khoảng cách giữa hai tàu phụ thuộc vào góc giữa hai hớng chuyển

động (gọi là góc giữa hai véctơ vận tốc)

GV Chuyển vấn đề: Vậy góc giữa hai véctơ rất quan trọng trong bài toán thực tiễn.

Hôm nay ta sẽ nghiên cứu về góc giữa hai vectơ

Hoạt động 2: Định nghĩa góc giữa hai véctơ.

GV : Cho hai véctơ a và b đều khác véctơ 0

a Từ một điểm O nào đó, hãy vẽ →

Trang 22

Cau lac bo Tacke

b Số đo góc ∠ AOB không phụ thuộc việc chọn vị trí điểm O.

GV: Vậy ta có định nghĩa về góc giữa hai véctơ (SGK)

0 , 0

b a

(a, b) =

GV: Cho từng nhóm trình bày kết quả, nhận xét và chỉnh sửa (nếu cần)

Hoạt động 4: Ví dụ áp dụng định nghĩa.

GV: Cho ∆ABC đều, G là trọng tâm

Hoạt động 5: Định nghĩa tích vô hớng của hai véctơ.

GV: Giả sử một lực F tác dụng lên một vật làm vật đó chuyển động từ điểm O đến

điểm O’ (nh hình 3) Hãy viết công thức tính công sinh ra bởi lực F

Trang 23

Ví dụ áp dụng định nghĩa tích vô hớng

GV: Cho ∆ABC đều cạnh a, G là trọng tâm

GV : Cho từng nhóm trình bày, nhận xét và chỉnh sửa (nếu cần)

GV? Trong trờng hợp nào thì a.b= 0?

a (

0 t vec 1

Trang 24

Cau lac bo Tacke

Ghi nhớ a2= a.a = 2

a

Hoạt động 8 : Củng cố tiết học và hớng dẫn bài tập.

Bài 1 : Cho hai véc tơ avàbkhác0

1- Trong trờng hợp nào thì a.b > 0

2) Kỹ năng: Thành thạo vận dụng kiến thức vào giải toán

3) T duy: Hiểu đợc ứng dụng của tích vô hớng:

- Biết quy lạ thành quen

4) Thái độ: Cẩn thận, biết đợc ứng dụng thực tế.

II Phơng tiện dạy học:

- Chuẩn bị kết quả mỗi hoạt động

- Chuẩn bị phiếu bài tập

Trang 25

III Phơng pháp vấn đáp gợi mở.

IV Tiến trình bài học:

HĐ 1 : ∆ABC: A = 900 ; B = 300 ; AC = a

2

, tan(

) , sin(

) , ( cos

AB

+ + cos( , ) cos( , ) )

- Nhận bài tập Đọc hiểu nhiệm vụ

- Tìm cách giải bài toán

- Trình bày kết quả

Giao bài tập theo nhómNhóm TB: d)

Khá: b); c)Giỏi: a); c)

suy ra cách chứng minh 3 đờng cao trong ∆ đồng quy

2) ∆ABC trung tuyến AD, BE, CF chứng minh rằng:

0

. → + → →+ → → =

CF AB BE CA AD BC

3) Tam giác A,B,C,D; M, N trung điểm AB, CD chứng minh rằng:

- Nhận bài tập Đọc nghiên cứu đầu

- Từng nhóm trình bàyGiáo viên nhận xét

P2: - Vận dụng tính chất phân phối củatích vô hớng đối với phép cộng

AB→+BC→ =AC→, → → →

=OB OA AB

HĐ 3 : ∆ABC góc A nhọn, vẽ bên ngoài ∆ABC các tam giác vuông cân đỉnh A là ABD,ACE Gọi M trung điểm BC chứng minh rằng: AMDE

- Học sinh nhận bài tập Giao bài tập cho cả lớp

Trang 26

Cau lac bo Tacke

- Nhận dạng bài tập

- Trình bày lời giải

- Chỉnh sửa hoàn thiện

- Hớng dẫn vẽ hình

- CM: → . → =0

DE AM

- M trung điểm BC -> → → →

+

=AB AC AM

2

→ → →

=AE AD DE

HĐ 4 : Cho hai điểm MN nằm trên đờng tròn đờng kính AB = 2R Gọi I là giao điểm của hai

đờng thẳng AM, BN

CMR: a) → → → →

=AB AI AI

AM . b) → → → →

=BA BI BI

c) Tính: → → → →

+BN BI AI

AM . theo R

- Học sinh nhận bài tập

- Nhận dạng bài tập

- Trình bày lời giải

- Chỉnh sửa hoàn thiện

Giao bài tập cho 3 nhóm

- Nhóm TB: câu a Khá: câu b Giỏi: câu c

- Giáo viên hớng dẫn vận dụng công thức hình chiếu

.

) , (

b a b a b a

b a

b a goc

Chứng minh đẳng thức véctơ: - Tính chất phân phối

- Quy tắc 3 điểm đối với phép (+), phép (-)

- M trung điểm →

ABN 2: NM→ =NA→ +NB

- CM: ABCD -> → . → =0

CD AB

120 0 = +b) sin900 + cos300 + cos900 =

HĐ 2 :

1) O bất kỳ:

Trang 27

B

D

CN

M

A

N

BM

I

A

E

CM

BD

0 ) )(

( ) )(

( ) )(

(

. →+ → →+ → → = →− → → − → + →− → →− → + → − → →− → =

OA OB OD OC OC

OA OD OB OB

OC OD OA AB

DC CA DB

2

H§ 3 :

0

) 90 cos(

) 90 cos(

.

.

.

.

.

) )(

(

.

2

0 0

=

+

− +

=

=

− +

=

− +

AC A AE

AB

AD AC

AE

AB

AD AC AE AC AD AB

AE

AB

AD AE AC AB DE

.

.

R AB AB AB IB AI

AB

BI BA AI AB BI BN

=

+

= +

Trang 28

Cau lac bo Tacke

- Nắm vững khắc sâu Định lí hàm số cosin, hàm số sin

- Nắm vững các công thức diện tích tam giác, công thức độ dài đờng trung tuyến

2) Về kỷ năng:

- Thành thạo sử dụng định lí cosin, định lí hàm số sin

- Thành thạo các bớc biến đổi

- Thành thạo vận dụng công thức diện tích tam giác, công thức độ dài đờng trungtuyến

3) Về t duy:

- Rèn luyện khả năng tơng tử hoá, khái quát hoá

- Hiểu đợc cách áp dụng lợng giác vào tam giác

- Chuẩn bị bảng kết quả

- Chuẩn bị phiếu học tập

- Chuẩn bị máy chiếu

III Phơng pháp dạy học:

Trang 29

- Vấn đáp gợi mở kết hợp với hoạt động của nhóm

IV Tiến hành bài học:

1) ổn định tổ chức: Chia lớp thành 4 nhóm

2) Kiếm tra bài cũ: Lồng vào các hoạt động của giừo học

3) Bài mới:

Tiết 1:

HĐ1: : Tìm hiểu nhiệm vụ

BT1: Cho tam giác ABC, cạnh a, b, c, góc A , B, C

Hoạt động của học sinh Hoạt động của giáo viên

- Tiếp nhận nghiên cứu đề bài

- Thảo luận nhóm tìm lời giải

- Độc lập tiến hành giải toán

- Cử đại diện trình bày lời giải

- Theo dõi lời giải của nhóm khác để có

nhận xét khi giáo viên yêu cầu

- Phân công nhiệm vụ cho các nhóm họcsinh

Nhóm 1: câu a, nhóm 2 câu b; nhóm 3câu c; nhóm 4 câu d

- Yêu cầu học sinh thảo luận tìm lời giảisau đó cử đại diện trình bày

- Yêu cầu nhận xét, bổ sung về lời giảicủa nhóm khác

- Chính xác kết quả và cho điểm

Trang 30

Cau lac bo Tacke

- Chính xác hoá và ghi nhận kết quả

- Trình bày lời giải khi GV yêu cầu

- Chính xác hoá và nghi nhận kết quả

Yêu cầu học sinh thảo luận tìm lời giải

- Theo dõi hoạt động của học sinh

- Nhận xét kết quả của 1 hoặc 2 HS hoànthành nhiệm vụ đầu tiên

- Chính xác kết quả và cho điểm

BT4: Cho ∆ABC có độ dài 3 đờng trung tuyến 15, 18, 27

a) Tính diện tích ∆ABC

b) Tính độ dài các cạnh của ∆ABC

HĐ6 Giải bài tập 3

Hoạt động của học sinh Hoạt động của giáo viên

- Tiếp nhận nghiên cứu đề bài - Phân công nhiệm vụ cho các nhóm học

Trang 31

- Thảo luận nhóm tìm lời giải

- Độc lập tiến hành giải toán

- Cử đại diện trình bày lời giải

- Theo dõi lời giải của nhóm khác để có

nhận xét khi giáo viên yêu cầu

- Chính xác hoá và ghi nhận kết quả

sinh

Nhóm 1: câu a, nhóm 2 câu b; nhóm 3câu c; nhóm 4 câu d

- Yêu cầu học sinh thảo luận tìm lời giảisau đó cử đại diện trình bày

- Yêu cầu nhận xét, bổ sung về lời giảicủa nhóm khác

- Chính xác kết quả và cho điểm

- Trình bày lời giải khi GV yêu cầu

- Chính xác hoá và nghi nhận kết quả

Yêu cầu học sinh thảo luận tìm lời giải

- Theo dõi hoạt động của học sinh

- Nhận xét kết quả của 1 hoặc 2 HS hoànthành nhiệm vụ đầu tiên

- Chính xác kết quả và cho điểm

Trang 32

Cau lac bo Tacke

+ Giá trị lợng giác của góc tù 00 -> 1800+ Đ/n tính vô hớng của hai vectơ

+ Đ/l Cosin, đ/l sin, đồ dài đờng trung tuyến, công thức tính diện tích của tam giác

2) Về kỹ năng:

+ Vận dụng đợc các định lí cosin, đ/l sin trong tam giác, công thức độ dài trung tuyến, diện tích tam giác vào bài toán chứng minh, tính toán hình học, và giải quyết một sốbài toán thực tế

+ Chuẩn bị máy chiếu (bóng phụ)

+ Chuẩn bị phiếu học tập, giấy trang

III Phơng pháp:

+ Gợi mởi, vấn đáp

+ Chia nhóm nhỏ học tập (chia lớp thành 3 nhóm theo trình độ nhận thức về môn toán)

+ Phân bậc HĐ các nội dung học tập

IV Tiến hành bài học:

1) ổn định lớp: Chia lớp thành 3 nhóm: Nhóm TB1, nhóm khá, nhóm giỏi

2) Kiểm tra bài cũ: Lồng vào trong bài học

3) Dạy bài mới

Hoạt động 1: Tìm hiểu nhiệm vụ qua bài tập

Bài tập 1: Cho tam giác cân ABC tại A, Â = 1200, AB = AC = a, I là tâm đờng tròn nội tiếp

a) Tính AB CA ; AB IH

Trang 33

b) Tính: AB BC + BC CA + CA AB

Bài tập 2: Trên mặt phẳng toạ độ oxy cho 2 điểm

A (1; 3) ; B (5; 1)a) Tìm toạ độ điểm I t/m

IO + IA - IB = O b) Tìm trên trục hoành điểm D sao cho góc ADB tại D

- Phát để bài (in sẵn)(cả 3 câu) cho mỗi nhóm

- Giao nhiệm vụ cho từng nhóm

- Giải thích các thắc mắc khi cần

Hoạt động 2: Học sinh độc lập tiến hành bài tập 1: có sự hớng dẫn, điều khiển của

giáo viên

Hoạt động của học sinh Hoạt động của giáo viên

- Thảo luận theo nhóm và độc lập tiến

Trang 34

Cau lac bo Tacke

Hoạt động 3: Học sinh độc lập tiến hành giải bài tập 2 Có sự hớng dẫn điều khiển

của giáo viên

- Thảo luận theo nhóm và độc lập tiến

- Yêu cầu đại diện mỗi nhóm trình bày lời giải (chiếu trên màn hình)

- Đánh giá kết quả, sữa chữa, chú ý các sai lầm thờng gặp

- Chính xác hoá kết qảu (chiếu lời giải ngắn gọn bài tập 2 trên màn hình)

Hoạt động 4: Học sinh độc lập tiến hành giải bài tập 3 có sự hớng dẫn, điểu khiển

giáo viên

- Thảo luận theo nhóm và độc lập tiến

- Yêu cầu đại diện mỗi nhóm trình bày lời giải (chiếu trên màn hình)

- Đánh giá kết quả, sữa chữa, chú ý các sai lầm thờng gặp

- Chính xác hoá kết qủa (chiếu lời giải ngắn gọn bài tập 3 trên màn hình)

4) Cũng cố:

1) Nêu định nghĩa tính vô hớng 2 vectơ, tính chất, biểu thức toạ độ của tính vô hớng,

độ dài của vectơ K/c giữa hai điểm

2) Nêu đ/l sin, đ/l cos; CT tính S,…

5) Bài tập về nhà:

+ Hoàn chỉnh 3 bài tập trên

+ Làm các bài tập chơng II - SGK hình học 10 nanag cao

Trang 35

V Lêi gi¶i ng¾n gän cho c¸c bµi tËp

− +

= +

− +

0 1 3

0 5

1

y y y

x x

6 − )

Trang 36

Cau lac bo Tacke

Bµi 3: a) VP =  + + +  + ab− 

b c a c ab

c b a b

2 2

2 2 2 2

2 2

a

b c a c b

a + − + + − = =

2

2 2 2 2 2 2

b) VP = + − +  +ac− 

b c a R

c ab

c b a R

b

2 2

2

) (

2

2 2 2 2

2 2

VP =

aR

b c a aR

c b a

4 4

2 2 2 2 2

R

a aR

a

sin 2

S

b c a B

B

4 sin

cos = 2 + 2 − 2

CotC =

S

c b a C

C

4 sin

cos = 2 + 2 − 2

VP =  + − +S + − 

c b a b c a a

I Môc tiªu kiÓm tra

1) KiÓm tra sù tiÕp thu cña häc sinh vÒ c¸c kiÕn thøc sau:

Trang 37

2) Khả năng vận dụng những kiến thức nêu trên để giải các bài toán có liên quan

Vận dụng

10,5đ

10,5đ

11đ

10,5đ

10,5đ

63,5đ

Thống kê 1

0,5đ

11đ

10,5đ

32đ

0 2 2

>

− +

0 1

0 2 2

y x

y x

<

− +

0 1

0 2 2

y x

y x

>

− +

0 1

0 2 2

y x

y x

y

Trang 38

Cau lac bo Tacke

0 3 2

2

x

x x

A x< − 1 ∪x> 3 B − 1 <x< 3 C − 1 ≤x< 3

D − 1 <x≤ 3

Bài4:(0,5đ) Một cửa hàng bán quần áo thống kê số quần bò nam của hãng P bán đợc trong

1 tháng theo cỡ khác nhau và có bảng thống kê sau

x

x x

x

sin

sin 2 cot )

P Bài 8:(0,5đ) Trên mặt phẳng toạ độ oxy PT nào sau đây không phải là PT đờng tròn

A x2 +y2 + 3xy = 1 B 2x2 +y2 −x+y= 0

Trang 39

C 5x2 + 5y2 −x+ 2y+ 1 = 0 D x2 −y2 + 2x− 4y= 0

II) Phần Tự luận(6 điểm)

Bài 9(2 điểm) Cho BPT (m+ 1 )x2 + 2mx+m− 1 < 0

a) Giải BPT với m=1

b) Xác định m để BPT có nghiệm đúng với ∀xR

Bài10(1,5 điểm) Khi thống kê về chiều cao của các học sinh nam trong lớp

10A ta có số liệu sau:

Nhóm Chiều cao trong khoảng Số ngời đạt đợc

Bài11(2,5 điểm) Trong mặt phẳng toạ độ cho 3 điểm A(1,3) ;B(-2,0);C(2,0)

a) Tìm toạ độ của 2 véctơ AB, BC.Chứng minh rằng 3 điểm A,B,C không thẳng hàng b) Viết phơng trình đờng tròn (C) ngoại tiếp tam giác ABC

c) Viết phơng trình tiếp tuyến của đờng tròn (C) tại điểmQ

Tiết 27-28: Đ1 ph ơng trình tổng quát của đ ờng thẳn g

+) Định nghĩa vectơ pháp tuyến của đờng thẳng

+) Phơng trình tổng quát của đờng thẳng và vận dụng vào bài tập

+) Các phơng trình đờng thẳng trong những trờng hợp đặc biệt

Trang 40

Cau lac bo Tacke

+) Thầy: Nghiên cứu tài liệu, soạn giáo án

+) Trò : Ôn tập lại kiến thức về Vectơ và đọc trớc bài “Phơng trình tổng quát của đờngthẳng”

2 Dạy học bài mới

Hoạt động 1: Hình thành khái niệm vectơ pháp tuyến của đờng thẳng

Bài 1: cho các hình vẽ

Hãy nhận xét về mối liên hệ giữa phơng của các vectơ n1,n2, n3 với đờng thẳng∆

Hoạt động của học sinh Hoạt động của giáo viên

- Nghe câu hỏi của giáo viên

- Thảo luận nhóm và tìm phơng án trả

lời

- Cử đại diện của nhóm trả lời câu hỏi

- Phân công nhiệm vụ cho từng nhóm

- Yêu cầu mỗi nhóm cử đại diện trả lờicâu hỏi

- ở các hình vẽ trên, các vectơ n1,

3

, n

n đều khác 0 và các phơng củachúng đều vuông góc với đờng thẳng∆.Khi đó ta gọi n ,n, n3 là những vectơ

Ngày đăng: 06/07/2013, 01:25

Xem thêm

HÌNH ẢNH LIÊN QUAN

Hoạt động 1: Hình thành định nghĩa  phép cộng vectơ . - Giao an 10
o ạt động 1: Hình thành định nghĩa phép cộng vectơ (Trang 4)
Hoạt động 1: Hình thành khái niệm vectơ pháp tuyến của đờng thẳng - Giao an 10
o ạt động 1: Hình thành khái niệm vectơ pháp tuyến của đờng thẳng (Trang 40)
3. Hình dạng của parabol: - Giao an 10
3. Hình dạng của parabol: (Trang 73)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w