Hướng dẫn tất cả toàn bộ cách giải toán 12 trắc nghiệm bằng máy tính casio, giúp học sinh đạt điểm tối đa trong kì thi THPT quốc gia sắp đến, gồm 5 chuyên đề: Hàm số, Mũ Loogarit, Nguyên hàm tích phân, Số phức, Hình học Không gian.
Trang 1I[YQ3OXV0ÒQ7RQ
Trang 23+p1/¨7+8<79j9'0,1++$
&KX\rQÿӅ+jPVӕ
%jL6ӱGөQJFDVLRJLҧLEjLWRiQÿѫQÿLӋX
%jL%jLWRiQWѭѫQJJLDRFӫDKjPVӕ
%jL%LӋQOXұQVӕQJKLӋPSKѭѫQJWUuQK
&KX\rQÿӅ+jPVӕPNJ/RJDULW
%jL%jLWRiQPD[PLQFӫDKjPVӕPNJORJDULW
%jL3KѭѫQJWUuQKPNJORJDULW
%jL%ҩWSKѭѫQJWUuQKPNJORJDULW
&KX\rQÿӅ1JX\rQKjPWtFKSKkQ
%jL7tQKWtFKSKkQFKӭDWKDPVӕP
%jL%jLWRiQӭQJGөQJWtFKSKkQWtQKGLӋQWtFKKuQKSKҷQJ
%jLӬQJGөQJWtFKSKkQÿӇWtQKWKӇWtFKNKӕLWUzQ[RD\
&KX\rQÿӅ6ӕSKӭF
%jL%jLWRiQWuPSKҫQWKӵFSKҫQҧR0{ÿXQVӕSKӭF
%jL&ăQEұFFӫDVӕSKӭFSKѭѫQJWUuQKEұF
%jL'ҥQJOѭӧQJJLiFFӫDVӕSKӭF
&KX\rQÿӅ+uQKJLҧLWtFKWURQJNK{QJJLDQ
%jL*LDRWX\ӃQFӫDKDLPһWSKҷQJ
%jL7tQKGLӋQWtFKYjWKӇWtFK
%jL9LӃWSKѭѫQJWUuQKPһWSKҷQJ
%jL7tQKJyFJLӳDKDLPһWSKҷQJKDLÿѭӡQJWKҷQJ
3+p1%j,7t3k3'1*
0&/&
Trang 3,/êWKX\ÄWY¬YÉGÜ
7LӋPFұQÿӭQJ
ĈѭӡQJWKҷQJx= ÿѭӧFJӑLOjWLӋPFұQÿӭQJFӫDÿӗWKӏKjPVӕx y= f x( ) QӃXWKӓDPmQWURQJFiFÿLӅXNLӋQVDX
&iFKWuPWLӋPFұQÿӭQJFӫDÿӗWKӏKjPVӕy= f x( )
%˱ͣF7uPQJKLӋP x= FӫDPүXx
%˱ͣF7tQKJLӟLKҥQ
1ӃXWURQJJLӟLKҥQEҵQJ−∞ KRһF+∞ WKux= OjWLӋPFұQÿӭQJFӫDx
KjPVӕ
1ӃXFҧJLӟLKҥQEҵQJVӕKӳXKҥQWKu x= NK{QJSKҧLOjWLӋPFұQx
ÿӭQJFӫDKjPVӕ
7LӋPFұQQJDQJ
ĈѭӡQJWKҷQJy = ÿѭӧFJӑLOjWLӋPFұQQJDQJFӫDÿӗWKӏKjPVӕy y= f x( ) QӃXWKӓDPmQWURQJFiFÿLӅXNLӋQVDX
OLP
x f x y
→−∞ = KRһF OLP ( )
x f x y
&iFKWuPWLӋPFұQQJDQJFӫDÿӗWKӏKjPVӕ
%j,%j,72k197, 0&t1
( )
OLP
x x
f x
−
( )
OLP
x x
f x
+
( )
OLP
x x f x
OLP
x x f x
( )
OLP
x x
f x
−
OLP
x x
f x
+
−∞
−∞
+∞
+∞
Trang 4%˱ͣF7tQKJLӟLKҥQFӫDKjPVӕ y= f x( )
&iFKWtQK
%˱ͣF1KұSELӇXWKӭFf(xYjRPi\
%˱ͣF1KҩQ r
%˱ͣF7KD\−∞ = − Yj+∞ =
%˱ͣFҨQ=UDNӃWTXҧ
.ӃWOXұQ
1ӃXFҧKDLNӃWTXҧOjPӝWJLiWUӏKӳXKҥQEҵQJQKDXWKuWDNӃWOXұQÿӗWKӏ KjPVӕFyPӝWWLӋPFұQQJDQJ
1ӃXKDLNӃWTXҧOjKDLJLiWUӏKӳXKҥQNKiFQKDXWKuWDNӃWOXұQÿӗWKӏKjP VӕFyKDLWLӋPFұQQJDQJ
1ӃXKDLNӃWTXҧOjKDLJLiWUӏNK{QJKӳXKҥQWKuNӃWOXұQÿӗWKӏKjPVӕ NK{QJFyWLӋPFұQQJDQJ
7uPWҩWFҧFiFJLiWUӏWKӵFFӫDWKDPVӕPVDRFKRÿӗWKӏFӫDKjPVӕ
FyWLӋPFұQQJDQJ
$.K{QJFyJLiWUӏWKӵFQjRFӫDPWKӓDPmQ %P<
&P= 'P>
*L̫L
%jLWRiQQj\\rXFҫXWuPWLӋPFұQQJDQJ
⇒ 7D[pWJLiWUӏJLӟLKҥQFӫDKjPVӕ"
&iFKWKӵFKLӋQEҵQJ&DVLR
%˱ͣF1KұSELӇXWKӭFYjRPi\
&iFEѭӟFQKұSaĺQĺOĺ+ĺ1ĺ$ĺsĺQ ĺmĺQĺOĺd ĺ+ĺ1
/~FQj\PjQKuQK[XҩWKLӋQ
%˱ͣF1KҩQr
2
1 1
x
y
P[
+
=
+
2
1 1
x P[
+ +
Ӌ
( )
OLP
x f x y
→−∞ = OLP ( )
x f x
( )
OLP
x f x
Trang 5%j,71+*,k75%,87+&
,/êWKX\ÄWY¬YÉGÜ
'ҥQJĈӅEjLFKRFiFWKDPVӕÿӝFOұSQKDX
&iFKJL̫L
WKD\FiFWKDPVӕYjRÿӅEjLĺVӱGөQJPi\WtQKWuPNӃWTXҧ
WKD\FiFWKDPVӕYjRNӃWTXҧĺVӱGөQJPi\WtQKWuPNӃWTXҧ
1ӃXÿyOjNӃWTXҧEҵQJQKDXWKuÿyOjÿiSiQÿ~QJ
'ҥQJĈӅEjLFKRFiFWKDPVӕSKөWKXӝFQKDXWK{QJTXDPӝWÿҷQJWKӭF
&iFKJL̫L
%ѭӟF&KRPӝWWKDPVӕEҵQJPӝWJLiWUӏFөWKӇ
ĺWtQKWKDPVӕFzQOҥLWKHRWKDPVӕQj\EҵQJFiFKWKD\JLiWUӏWKDPVӕ Qj\YjRÿҷQJWKӭFÿӅFKR
%˱ͣF7KD\FiFWKDPVӕQj\YjRELӇXWKӭFÿӅFKR
ĺVӱGөQJPi\WtQKFKRNӃWTXҧ
ĺWKD\FiFWKDPVӕYjRFiFNӃWTXҧ
ĺVӱGөQJPi\WtQKWtQKNӃWTXҧ
1ӃXFQJNӃWTXҧWKuNӃWOXұQÿiSiQÿ~QJ
&KRa ORJ2YjE ORJKm\ELӇXGLӉQORJ6WKHRaYjE
2 6
ORJ D DE
DE
+
=
6
2 ORJ D DE
DE E
+
= +
2 6
ORJ D DE
DE
+
=
6
2 ORJ D DE
DE
+
=
Trang 6*L̫L
%jLWRiQQj\FK~QJWDVӱGөQJWtQKQăQJOѭXQJKLӋPÿӇWtQK
%˱ͣF
a ORJ2 ĺqĺ 672 → $ ÿmOѭXa ORJ2YjR$
E ORJ ĺqĺ 672 → % ÿmOѭXE ORJYjR%
F ORJ6 ĺqĺ 672 → & ÿmOѭXF ORJ6YjR&
%˱ͣF7KD\YjRFiFÿiSiQÿӇWKӱ
;pWÿiSiQ&
&iFEҥQWKӵFKLӋQWtQK& A 2AB
AB B
+ +
Qĺ C ĺpĺaĺQĺ A ĺ+ĺ2ĺQĺ A ĺQĺ
B ĺRĺQĺ A ĺQĺ B ĺ+ĺQĺ B ĺNӃWTXҧEҵQJ
Ö9ұ\ÿiSiQÿ~QJOjÿiSiQ&
&KӑQORJ2 aORJ3 ENKLÿyORJ6WtQKWKHRaYjEOj
$ 1
D E+ % DE D E+
& D E+ 'D2+ E2
%˱ͣF7ѭѫQJWӵYtGөFK~QJWDVӱGөQJWtQKQăQJOѭXQJKLӋP
a ORJ2 «ĺqĺ 672 → $ OѭXaYjR$
E ORJ3 ĺqĺ 672 → % OѭXEYjR%
F ORJ6 «ĺqĺ 672 → & OѭXFYjR&
%˱ͣF7KӱÿiSiQ
9ӟLÿiSiQ$ 1
D E+ WDWtQK&– 1
A+B
1ӃXNӃWTXҧEҵQJWKu$OjÿiSiQÿ~QJ
6
2 ORJ D DE
DE E
+
= +
Trang 71ӃXNӃWTXҧNKiFWKu$OjÿiSiQVDL
&iFKҩQPi\WtQK
ҨQCÿӇYӅEDQÿҫX
Qĺ C ĺpĺaĺ1ĺRĺQĺ A ĺ+ĺQĺ B ĺ= ĺ.ӃWTXҧEҵQJ
/RҥLÿiSiQ$
7LӃSWөFWKӱÿiSiQ% DE
D E+ WDQKұSELӇXWKӭF
C – AB
A+BYjRPi\VDXÿyҩQ=ĺNӃWTXҧEҵQJ
⇒ ĈiSiQÿ~QJOj%
)/ѭXê.KLWKD\ÿiSiQ%FK~QJWDNK{QJWҳWPi\ÿӇQKұSOҥL
PjFK~QJWDҩQQ~W!ÿӇPi\FKRYӅELӇXWKӭFӣÿiSiQ$Oj
C – 1
A+BFK~QJWDFKӍFҫQÿѭDFRQWUӓYjRVӕ1WKD\EҵQJELӇXWKӭF
OjÿѭӧF
*LҧVӱWDFyKӋWKӭFD2 +E2 =DE aE!+ӋWKӭFQjRVDXÿk\ÿ~QJ
$ ORJ 2 D E+ = ORJ2D+ORJ2E % ORJ2 ORJ2 ORJ2
3
D E
& ORJ2 ORJ2 ORJ 2
3
D E
+ = + ' ORJ2 ORJ2 ORJ2
6
D E
*L̫L
%˱ͣF&KӑQa WKD\YjRELӇXWKӭF D2+E2 =DEWDFy
2
+ −E E =
*LҧLSKѭѫQJWUuQKEұFWDÿѭӧFQJKLӋPOj
1
x = + ĺqĺ 672 → $
2
x = − ĺqĺ 672 → %
7DWKҩ\QJKLӋPx x ÿӅXOӟQKѫQYjÿѭӧFOѭXWҥL$Yj%
AB
Trang 8%˱ͣF7KD\YjRFiFÿiSiQÿӇWKӱ
ÿiSiQ$ ORJ 2 D E+ = ORJ2D+ORJ2E
7KD\a E $WDEҩPPi\WtQKÿѭӧFNӃWTXҧQKѭVDX
ORJ + A ORJ ORJ − − A= ≠ ORҥLÿiSiQ$
9ӟLÿiSiQ% ORJ2 4 ORJ ORJ2 2
3
A
A
+ − − = WKӓDPmQ
ORJ2 4 ORJ ORJ2 2
3
B
B
+ − − = WKӓDPmQ
⇒ ÿiSiQ%ÿ~QJ
,/êWKX\ÄWY¬YÉGÜ
+jPVӕPNJ
1
AFyQJKƭD⇔ $
A FyQJKƭD⇔ $
y=( )u x( ) αYӟLĮOjKҵQJVӕ
QӃXĮOjVӕQJX\rQGѭѫQJWKu( )u x( ) αFyQJKƭDYӟL∀ ∈\ x
QӃXĮOjVӕQJX\rQkPWKu( )u x( ) αFyQJKƭD⇔u x ≠
1ӃXĮNK{QJOjVӕQJX\rQKRһFEҵQJWKu( )u x( ) αFyQJKƭD⇔u x >
)/ѭXê7;ĈKjPVӕONJ\WKӯDy=( )u x( ) αSKөWKXӝFYjRVӕPNJĮ
y=a f x( )YӟLD!a
a f x( ) FyQJKƭD⇔ I[FyQJKƭD
%j,7t3;k&ô1+&$+j06
Trang 9%˱ͣF&KӑQÿiSiQWKӱ
ĈiSiQ$x!FKӑQx
7DQKұS (3 1)
2
ORJ x− − ĺrĺ " x = ĺ=ĺ.ӃWTXҧEҵQJ! 7DWKҩ\!⇒ ĈiSiQ$WKӓDPmQ
'Rx= ∈WKXӝFÿiSiQ'QrQÿiSiQ'WKӓDPmQ
%k\JLӡWD[pWÿiSiQ$Yj'
&KӑQx O~FQj\PWKXӝFÿiSiQ$PNK{QJWKXӝFÿiSiQ'
&K~QJWDWKӵFKLӋQ!ĺrĺ x" = ĺ=ĺ.ӃWTXҧEҵQJ! 7DWKҩ\ !⇒ ĈiSiQ$OjÿiSiQÿ~QJ
7ұSQJKLӋPFӫDEҩWSKѭѫQJWUuQK 2 1
3
ORJ x− > Oj
$x! %x! &x 'x
*L̫L
%˱ͣF&KX\ӇQYӃ 2 1
3
ORJ x− − >
%˱ͣF7KD\xYjREҵQJFiFKFKӑQJLiWUӏWӯÿiSiQ
$x!FKӑQx
7DQKұS 2 1
3
ORJ x− − ĺrĺ " x = ĺ=ĺ ӃWTXҧEҵQJ– 7DWKҩ\ ⇒ /RҥLÿiSiQ$Yj'
%x!FKӑQx
7DWKҩ\ !−3 ⇒ &KӑQÿiSiQ%
&xFKӑQx
9ұ\ÿiSiQÿ~QJOjÿiSiQ%
Trang 101
4 1
x−
⎛ ⎞ <⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ Oj
$ %
4
⎛ ⎞
⎜ ⎟
⎝ ⎠ & +∞ ' −∞
*L̫L
%˱ͣF&KX\ӇQYӃ
1
4 1
x−
⎛ ⎞ −⎛ ⎞ <
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
%˱ͣF;pWÿiSiQÿӇWtQK
ĈiSiQ$FKӑQx
1KұS
1
4 1
x−
⎛ ⎞ −⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ĺrĺ " x = ĺ=ĺ.ӃWTXҧEҵQJ >
⇒ /RҥLÿiSiQ$
ĈiSiQ%
4
⎛ ⎞
⎜ ⎟
⎝ ⎠ FKӑQx
− < ⇔ 1KұQÿiSiQ%
ĈiSiQ& +∞FKӑQx
ĈiSiQ' −∞FKӑQx
⇒ ĈiSiQÿ~QJOjÿiSiQ%
)&K~ê/RҥLEjLWRiQQj\FiFEҥQQrQWKӱWҩWFҧFiFÿiSiQÿӇÿѭӧFDQWRjQ
KѫQ9uQӃXÿiSiQVDLWKuFK~QJWDNKҷQJÿӏQKÿѭӧFQJD\FzQÿiSiQÿ~QJWKu FK~QJWDFKѭDWKӇNӃWOXұQÿѭӧF
2 x − x ≤ 2 Oj
$ %>–@ &>–@ '.ӃWTXҧNKiF
*L̫L
%˱ͣF&KX\ӇQYӃ( ) 2 2 ( )3
x − x − ≤
Trang 117DQKұSQKѭVDX
2
0
+
1 2 1 [ 0
d
ĺ=NK{QJTXDQWkPJLiWUӏx".ӃWTXҧEҵQJ − ≠ ⇒ /RҥLÿiSiQ$
;pWÿiSiQ%\ = x2− +x x+
!ĺ&KӍQKVӱD ( ( 2 ) )
1 2 1 [ 0
d
.ӃWTXҧEҵQJ⇒ 7ҥPQKұQÿiSiQ%
;pWÿiSiQ&\ = x2+ −x x+
!ĺ&KӍQKVӱD ( ( 2 ) )
1 2 1 [ 0
d
.ӃWTXҧEҵQJ⇒ 7ҥPFKҩSQKұQÿiSiQ&
/~FQj\WDWKҩ\FyNӃWTXҧEҵQJQrQÿӇQKDQKFK~QJWDWKӱWLӃSFiF JLiWUӏOkQFұQQKp
rĺ ĺ=ĺ=ĺ.ӃWTXҧEҵQJWKӓDPmQ
rĺ ĺ=ĺ=ĺ.ӃWTXҧEҵQJWKӓDPmQ
;pWÿiSiQ'\ = x2− −x x+
!ĺ&KӍQKVӱD ( ( 2 ) )
1 2 1 [ 0
d
.ӃWTXҧEҵQJ⇒ /RҥL'
%k\JLӡFK~QJWDTXD\OҥL[pWÿiSiQ%FiFJLiWUӏOkQFұQKRһFNKiF YӟLÿӇ[pWÿiSiQÿ~QJQKp
!ĺ&KӍQKVӱD ( ( 2 ) )
1 2 1 [ 0
d
.ӃWTXҧEҵQJ/RҥLÿiSiQ%
⇒ 9ұ\ÿiSiQÿ~QJOjÿiSiQ&
1 2
x> −
Trang 12*L̫L
yĺ∫,, FRV VLQ 3x x dx ĺ$QKұSFұQGѭӟLa ĺEQKұSFұQWUrQ
E ʌĺ=ĺ.ӃWTXҧEҵQJ
9ұ\ÿiSiQ&OjÿiSiQÿ~QJ
) /ѭXê%jLWRiQKjPOѭӧQJJLiFFiFEҥQÿӇPi\YӅFKӃÿӝ5DGLDQ
qĺwĺ4
7tQKWtFKSKkQ
1
OQ
e
I =∫x x dx
$ 1
2
2
e
I = −
&
2
1 4
e
1 4
e
I = −
*L̫L
yĺ∫,, xOQxdx ĺ$ĺ1ĺEĺ e ĺ=ĺ.ӃWTXҧEҵQJ 7DWKҩ\QJKLӋPOҿQrQWDOѭXOҥLqĺ 672 ĺ A
;pWÿiSiQ$ORҥLYu 1
2
I ≠
;pWÿiSiQ%
2
2
2
e
A− − = − ≠ ⇒ /RҥLÿiSiQ%
;pWÿiSiQ&
2
1
4
e
A− + = ⇒ ĈiSiQÿ~QJ
9ұ\ÿiSiQÿ~QJOjÿiSiQ&
3 4
2 6
VLQ VLQ
x dx x
π
π
−
∫ FyJLiWUӏEҵQJ
$ 3 2
2
− % 3 2 2
2
+ − & 3 2
2
+ ' 3 2 2 2
2 + −
Trang 13&KRVӕSKӭF]1 = +1 LYj]2 = −2 3L7tQK0{ÿXQFӫDVӕSKӭFz1+z2:
$ z1+ z2 = 13 % z1+z2 =
& z1+ z2 =1 ' z1+z2 =
*L̫L
%˱ͣF&ӝQJVӕSKӭF (1 ) (2 3 ) (1 2) (+ + −L L = + + −L 3 )L = − 3 2L
1ĺ+ĺ L ĺ+ĺ2ĺpĺ3ĺ L ĺ=ĺ.ӃWTXҧ 3 2L+
]= ] + ] = − L = + − =
⇒ ĈiSiQ$+RһF qĺeĺ3ĺpĺ2ĺ L ĺ=ĺ
.ӃWTXҧ 13
&KRVӕSKӭFzWKӓDPmQ( ) 1 + L ] = − 3 L+ӓLÿLӇPELӇXGLӉQ
FӫDzOjÿLӇPQjRWURQJFiFÿLӇP0134ӣKuQKWUrQ"
$ĈLӇP3 %ĈLӇP4 &ĈLӇP0 'ĈLӇP1
*L̫L
7uPVӕSKӭFz
3
1
L
L
−
+
aĺ3ĺpĺ L ĺR1ĺ+ĺ L ĺ=ĺ.ӃWTXҧ
.ӃWTXҧEҵQJ1 2L− ⇒ 3KҫQWKӵFa= ӭQJYӟLKRjQKÿӝEҵQJSKҫQҧR1 2
E= − ӭQJYӟLWXQJÿӝEҵQJ 2− ⇒ ĈLӇP4
⇒ ĈiSiQ%OjÿiSiQÿ~QJ
&KRVӕSKӭF]= + L7uPVӕSKӭFZ L ] ]= +
$Z= − L %Z= − −3 3L
&Z= + L 'Z= − − L
y
x
-2
O 1 -1
M
Q P
Trang 14] = + ⇒ = −L ] L
KRһFqĺ2ĺ2ĺ L+ ĺ=ĺ.ӃWTXҧ] = − L
5ĺ L ĺ=ĺ.ӃWTXҧEҵQJ 3 2L− − ⇒ ĈiSiQ%
,/êWKX\ÄWY¬YÉGÜ
%jLWRiQ3KѭѫQJWUuQKFKӍFKӭD z KRһF z
)&K~ê*LҧLVӕSKӭFWKuSKҧLFKX\ӇQVDQJFKӃÿӝ &03/;
wĺ2
1KҳFOҥL
7tQK0{ÿXQqĺeĺ1KұSzĺ=ĺ.ӃWTXҧ
7tQKVӕSKӭFOLrQKӧS z : qĺ2ĺ2ĺ1KұSzĺ=ĺ.ӃWTXҧ
1KұSLOjb
1
L
L
+
7tQK0{ÿXQwYӟL Z ] L= + +1
*L̫L
2(1 2 )
1 2
L L
L z
L
+ + −
+
=
+ aĺ
2(1 2 )
1 2
L L
L L
+ + −
+ + ĺ=ĺ.ӃWTXҧ (3 2 )+ L
%j,3+¡1*751+63+&
Trang 15,/êWKX\ÄWY¬YÉGÜ
7tFKFyKѭӟQJFӫDKDLYHFWѫ
*LҧVӱYHFWѫJJJGAB x \ 1 1 z1 CD xJJJG \ 2 2 z2
7tFKFyKѭӟQJFӫDKDLYHFWѫOjF{QJWKӭFzG=JJJG JJJGAB CD
%˱ͣF wĺ8PjQKuQKFKRYHFWѫA,B,C
%˱ͣF*LҧVӱJiQJJJGAB x \ 1 1 z1
OjYHFWѫAWKuEҩP1
%˱ͣF&KӑQ1
%˱ͣF1KұSx1= y1= z1 NKLÿyWDÿmJiQ[RQJYHFWѫ ABJJJGYjRYHFWѫ AJG
%˱ͣFҨQCÿӇWKRiW
%˱ͣFҨQqĺ5
%˱ͣFҨQ1'LPÿӇJiQJLiWUӏFKRYHFWѫ
%˱ͣFҨQ2ÿӇJiQYHFWѫ CD xJJJG \ 2 2 z2
YjRYHFWѫ BJG
%˱ͣF&KӑQ1
%˱ͣF1KұSx2= y2= z2 NKLÿyWDÿmJiQ[RQJYHFWѫCDJJJGYjRYHFWѫ BJG 1KѭYұ\FK~QJWDÿmQKұS[RQJYHFWѫ ABJJJGYj CDJJJGYjRPi\WtQK
%˱ͣFҨQCÿӇWKRiW
%˱ͣF7tFKFyKѭӟQJFӫD ABJJJGYj CDJJJGOj⎡⎣JJJG JJJGAB CD ⎤⎦
ҨQqĺ5ĺ3JӑLYHFWѫ ABJJJG) ĺOGҩXQKkQqĺ5ĺ4
JӑLYHFWѫ CDJJJG)ĺ=ĺNӃWTXҧ[= y = z= ĺFKӑQÿiSiQÿ~QJ
6DXNKLQKұS[RQJEѭӟFPi\FKRNӃWTXҧ>9FWA9FWB@
%j,%j,72k19HFWã
Trang 16ĈӇJLҧLKӋSKѭѫQJWUuQKWDWKӵFKLӋQ
wĺ5ĺ16DXÿyQKұSSKѭѫQJWUuQKYjR
%˱ͣF3KѭѫQJWUuQKÿѭӡQJWKҷQJGOj
− = − = − ⇒ ÿiSiQ
+m\YLӃWGOjJLDRWX\ӃQFӫD3Yj4
$ %
*L̫L
0һWSKҷQJ3Fy9737 uG = −
0һWSKҷQJ4Fy9737 YG = −
⇒ GFy97&3 QG = ⎣ ⎦⎡X YG G ⎤
%˱ͣF1KұSYHFWѫ uG Yj YGYjRPi\
;RQJEѭӟFQKұSGӳOLӋX
%˱ͣF7tQKWtFKFyKѭӟQJ QG = ⎣ ⎦⎡X YG G ⎤
qĺ5ĺ3ĺOĺqĺ5ĺ4ĺ= ⇒ NӃWTXҧnG = − −
%˱ͣF7uPÿLӇPWKXӝFGYjWKXӝF34
*LҧVӱA x y ( ) ∈ d
( ) ( )
∈
⎧
⇒ ⎨ ∈
⎩
4
x
x y
x y
y
−
⎧ =
⎪ + =
+ =
⎪⎩
x+ y+ z−
x+ = y− = z−
x+ y− z−
−
z
Trang 177tQKNKRҧQJFiFKJLӳDd1Yjd2
& '
*L̫L
%˱ͣF&KӑQ 01 − ∈ G 01 2 ∈ G2 ⇒0 0JJJJJJG1 2
%˱ͣF
X X 0 0
d d d
u u
=
G G JJJJJJG
G G
*iQuJG JJG1 u2
0 0
JJJJJJG
YjR
7tQKNKRҧQJFiFK9WFA9WFB9WFC
qĺeĺqĺ5ĺ3ĺOĺqĺ5ĺ4ĺ)ĺ
qĺ5ĺ7ĺqĺ5ĺ5ĺ)ĺPĺqĺeĺqĺ 5ĺ3ĺOĺqĺ5ĺ4ĺ)ĺ.ӃWTXҧ
⇒ ĈiSiQ&Ojÿ~QJ
,/êWKX\ÄWY¬YÉGÜ
7URQJNK{QJJLDQYӟLKӋWӑDÿӝ2[\]FKRKDLPһWSKҷQJ31Yj32YӟL 9737OҫQOѭӧWOjnG1
YjnG2
7tQKJyFJLӳDKDLPһWSKҷQJÿy
7DFyF{QJWKӭF
42 3
46 3
%j,71+*&*,$+$,0z73+x1*+$,ô¢1*
7+x1*ô¢1*7+x1*9j0z73+x1*
FRV
n n
&RV Q Q
n n
JG JJG
JG JJG
JG JJG FRV
Trang 18&iFKJL̫L
%˱ͣF;iFÿӏQK nJG1
YjnJJG2
%˱ͣF1KұS nJG1
YjnJJG2
YjRPi\
%˱ͣF6ӱGөQJqĺeYjWtFKY{KѭӟQJFӫDKDLYHFWѫ
(31) x+y+z − = (3 2) x+ −y z+ =
7tQKFRVLQFӫDJyFJLӳDPһWSKҷQJÿy
& 6
14
−
*L̫L
%˱ͣF7DFy nJG1 nJJG2 − Oj9737FӫD31Yj32)
%˱ͣF1KұS nJG1
YjnJJG2
YjRPi\
%˱ͣF7tQK
qĺeĺ(ĺqĺ5ĺ3ĺqĺ5ĺ7ĺqĺ5ĺ
4ĺ)ĺPĺ(ĺqĺeĺqĺ5ĺ3ĺ)ĺOĺq ĺeĺ5ĺ4ĺ)ĺ)ĺ)ĺ= ӃWTXҧOjKD\
⇒ 9ұ\ÿiSiQÿ~QJOj&
(d1Yjd2)
7tQKJyFJLӳDKDLÿѭӡQJWKҷQJd1Yjd2)
$ %
& '
*L̫L
%˱ͣF7DFy uJG1 − uJJG2 OjFiF97&3FӫDd1Yjd2)
2
16
6
x− = y+ = z−
−
2 1 2
x
=
⎧
⎪ = +
⎨
⎪ = − +
⎩
FRV
n n
&RV Q Q
n n
JG JJG
JG JJG
JG JJG FRV
Trang 19ô
3x −3−x = Oj2
$ % & '
3x −3−x = Oj2
$ % & '
$P< 2 % 2− < < P 2
&P= 2 'P> KRһF2 P< − 2
$@ %> &>@ '
$± %ORJ 2 & 'ORJ 2
$ % & '
y= − − −x x − Oj
$ −∞ − % − +∞ & − − '[− − ]
$ < <D < < E %< <D E>
ORJ ORJ ORJ ORJ
⎪
⎨
+ = +
⎪⎩
2
2
1
OQ
1
x
−
2
3
ORJ x + ORJ x + x− =
a >a ORJ 3 ORJ 4
( )
3
2
1
2
x
x x
−
⎜ ⎟
2
x
x
y
y
+
⎪
⎨
+ + =
⎪⎩