1. Trang chủ
  2. » Khoa Học Tự Nhiên

luyện thi đại học môn toán

30 481 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 13,31 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

PHAN RIENG Thi sinh chi dugfc chgn lam mpt trong hai phan phan A hoac B A... Hinh chieu vuong goc ciia dinh S len mat phang ABCD la trong tam cua tam giac BCD.. Tinh theo a the tich kh

Trang 1

ruyeii chifit & Gi&i thifu dethi Todn hqc - Nguyen Phii Khdnh , Nguyen Tai Thu

Gpi A la bien co lay duoc 8 vien c6 du ca 3 mau

A la bien co lay dugc 8 vien khong dii ca 3 mau Khi do

THl Lay dugc 8 vien co diing 1 mau (chi xay ra lay dug-c 8 bi vang) v | y co

B Theo chUcrng trinh nang cao

Cau7.b: B = B C n d , => B(0;-1) => B M = (2;2) Do do B M la mgt vec to phap

Ggi H la hinh chieu ciia B len A Ta co: BH < A B , khoang each tir B den

x = l + t

Ion nhat khi H = A, VTCP cua A la u ^ = U j ; A B =(1;-1;-1)=:>A:

Cau 9.b: Xet z = 0 la nghi|m cua phuong trinh Xet z * 0 Dat z = a + bi (a,b e ]R ,a2 + b^ > o), tu gia thiet ta co:

Lay (1) tru (2) ve theove taco 9a2 = 4b2 <::> a^ = - b ^ (3)

The ( 3 ) vao ( l ) ta dugc : ^ b 2 b^ + b « b = 4 a = — , (do a > 0,b > 0)

Trang 2

Tuyen chgn b Giai thi?u <fe thi loan hgc - Nguyen nu Khanli, Nguyen lai iniu

DETHiTH(jfs628

I PHAN CHUNG CHO TAT CA CAC T H I S I N H

Cau 1: Cho ham so: y = x-* - 3mx^ + 9x +1 c6 do thi {C^)

a) Khao sat su bien thien va ve do thi (CQ) ciia ham so

b) Gia six duong t h i n g ( d ) : y = x +10 - 3m cat do thj [C^) cua ham so tgi 3

diem phan biet A , B , C c6 hoanh do ian lugt Xi,X2,X3. Tim m de: xf +X2 +x^ <11

Cau 2: Giai phuong trinh : cos-* x + sin'' x = cosx + sin2x + sinx

Cau 3: Tim m de he phuong trinh

Cau 5: Cho hinh chop S.ABCD c6 day ABCD la hinh thang vuong tai A, B Biet

A D = 2AB = 2BC = 2a, SA = SD = SC = 3a Tinh the tich khoi chop SABC va

khoang each giira hai duong thang SB va CD

1 < a , b , c < 4

Cau 6: Cho cac so thuc a,b,c thoa man dieu kien

a + b + 2c = 8' Tim gia trj Ion nhat cua P = a'^ + b^ + 5c^

I I PHAN R I E N G T h i sinh chi dugc chpn lam mpt trong hai phan (phan

A hoac B)

A T h e o chiTofng t r i n h c h u a n

2 2 Cau 7.a: Trong mat ph5ng tc?a do Oxy, cho duong tron ( C ) : ( x - l ) +(y+2) =1

va duong thang (A) : 2x - y +1 = 0 Tim diem A thuoc duong thSng ( A ) sao cho

t u A ke dupe cac tiep tuyen AB, AC (B, C la cac tiep diem) den duong tron (C)

dong thai di^n tich tarn giac ABC bSng 2,7

Cau 8,a: Trong mat ph^ng Oxyz, cho diem M ( l ; 3; 1), duong thang d:

^ ~ ^ = y±l = I va mat phang ( P ) : x - y + 2z + 5 = 0 Viet phuong trinh mat

phang ( Q ) d i qua M , song song voi d va tao v6i ( P ) mot goc cp thoa coscp = ^

Cau 9.a: Cho a, p la hai so phuc lien hgp thoa la so thuc va a + p = 2>/3 Tinh a

B T h e o c h U o r n g t r i n h n a n g c a o

Cau 7.b: Trong mat phSng tpa dp Oxy, cho duong tron ( C ) : x^+y^-2x-4y-4=0

CO tam I va diem M(3;0) Viet phuong trinh duong thang A, biet A cat (C) tai

hai diem phan biet A , B sao cho t u giac A B I M la hinh binh hanh

Cau 8.b: Trong mat phang Oxyz, cho mp ( p ) : x + 2y + z - 3 = 0 , duong

X — 1 y + 1 z — 2

thang A : - — = —— = _ _ va diem A ( 4 ; l ; - 3 ) Viet phuong trinh duon^

thSng d nam trong (P), biet d cat A va khoang each t u A den d bang 42 ,

Cau 9.b: Tim c biet a, b va c la cac so nguyen duong thoa man c=(a+bi)'^ -107i

Hl/dNG DAN GIAI

I PHAN CHUNG CHO TAT CA CAC THI SINH Cau 1:

a) Danh cho ban doc

b) Ham so da cho xac dinh tren R

Phuong trinh hoanh do giao diem ciia (C) voi duong thang (d) la

-3mx^ + 8x + 3 m - 9 = 0 < : > ( x - l ) r x 2 + ( l - 3 m ) x + 9 - 3 m l = 0 ( l )

o X = 1 ( gia su X3 = 1) hoac x^ + ( l - 3m)x + 9 - 3m = 0 (2)

De duong thSng (d) cat (C) tai 3 diem phan bi?t thi phuong trinh ( l ) c6 3

nghiem phan biet <^ phuong trinh (2) c6 2 nghiem phan biet khac 1, tuc la phai c6:

1^ la gia trj can tim

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 3

Cau 2: Phuang trinh du<?c bie'n doi duoi d^ng:

(cosx + sinx)(l-cosx.sinx) = cosx + sin2x + sinx

<=> i(cosx + sinx)sin2x=sin2xo (cosx + sinx-2)sin2x=0

<=> sin2x = 0 o 2 x = k7i » x = k ^ ( k e Z )

Vgy, phuong trinh c6 1 ho nghi?m

Cau3:Truvetheove: yjsx^ +x + l-^3x^-x + l = ^jsy^ +y+ -^P/-y+

Xet ham so f (u) = Vsu^ + u+ 1 - Jsu^ - u + l,Vu € #

.f'(u)>0,Vuei^ nen phuong trinh f (x) = f (y) x = y

Khiay taco: N/SX^ + x +1 + Sx^ - x +1 = m, tu day tim duoc m>2

Cau4: t^^^xle"+lnx)

Cau 5: Theo gia thie't ta c6 BC = AB = a

Gpi H la trung diem ciia AD => HA = HD = a

fCH = a

Tu gia thie't => ABCH la hinh vuong canh a tam O =>

Trong tam giac AACDco C H la trung tuyen va C H = i A D : ^ A A C D

vuong tai C H la tam duong tron ngoai tiep tam giac AACD

Ta CO SB va CD la hai duong thSng cheo nhau

CD//(SBH) , , ,

SB c (SBH) ^ '^(^^'SB) = ^[CD'(SBH)] = d[C(SBH) Mat khac <

f CO 1 H B

Ta CO ^ C O l ( S B H ) ^ C O = d C,(SBH)

[ C O I S H ^ ' L 'V /J 2 Cau 6: P = a^ + b^ + 5c^ = (a + hf -3ab(a + b) + 5c^ = (8 - 2c)^ - 3ab(8 -2c) + 5c^

o P = -3c^ + 96c^ - 384c + 512 - 3ab (8 - 2c)

Ta CO ( a - l ) ( b - l ) > 0 = > a b - ( a + b) + l>0=>ab>a + b - l = 8 - 2 c - l = 7-2c ab(8 - 2c) > (7 - 2c)(8 - 2c) => -3ab(8 - 2c) < -3(7 - 2c)(8 - 2c)

Trang 4

28 + 7VT0 r, u - 28-7VT0

f(l) = 131, f 28-7VTo'l =, f(3) = 137

Vay gia trj Ion nliat cua P la 137, dat dugc khi c = 3,a = l,b = 1

I I PHAN RIENG Thi sinh chi dugfc chgn lam mpt trong hai phan (phan A

hoac B)

A Theo chUorng trinh chuan

Cau 7.a:

Duong tron (C) c6 tarn l ( l ; - 2 ) , ban kinh R = l

Honnua: S^BIC = S A B C + S B , C « I B A B = ilB2sinBIG + iAB2sinBAG (2)

Tie (l) va (2), suy ra:

2IB.AB = (iB^ + AB^ jsin BAG => sin BAG = 2IB.AB

Cau9 a: Gia su a = a + ib ( a , b £ K ) t h i p = a - i b

Trang 5

DETHITHljrsd29

I PHAN CHUNG CHO TAT CA CAC THI SINH

Cau 1: Cho ham so y = - ( m ^ + m - sjx + - 3 m + 2 ( l ) , c6 do thi (C^)

a) Khao sat su bien thien va ve do thj ( C Q ) cua ham so

b) Tim tat ca cac gia tri thuc cua m sao cho do thi ham so ( l ) cat duong

th5ng y = 2 tai ba diem phan biet c6 hoanh dp Ian Ixxgt la X i , X 2 , X 3 va dong

thoi thoa man dang thuc X j + X j + X3 = 18

3 X 3 X

sm'^ ~ cos

-2 + sin X - = cosx Cau 2: Giai phuong trinh:

Cau 3: Giai phuong trinh: \lx^-5\ 6 + N / X ^ + Vx + 21 = V ? + 1 9 x -42

2

Cau 4: Tinh tich phan: I - J(x + l)lnx.e''dx

1

Cau 5: Cho hinh chop S.ABCD c6 day ABCD la hinh binh hanh thoa man AB = 2a,

BC = aV2,BD = a%/6 Hinh chieu vuong goc ciia dinh S len mat phang (ABCD)

la trong tam cua tam giac BCD Tinh theo a the tich khoi chop S.ABCD, biet

rang khoang each giua hai duong thSng AC va SB bang a

Cau 6: Cho ba so a,b,c > 0 thoa a + b + c < 1,5 Tim gia trj nho nhat cua bleu

A Theo chuorng trinh chuan

Cau 7.a: Trong mat phSng tQa dg Oxy, cho diem 1(2; 4) va hai duong than;.;

d i : 2 x - y - 2 = 0, d 2 : 2 x + y - 2 = 0

Viet phuong trinh duong tron tam I cat dj t^ii hai diem A, B va cat d 2 t?'

hai diem C, D sao cho AB + CD = — ~ •

o Cau 8.a: Trong khong gian vai h? tQa dp Oxyz, cho mat cau

(S): ( x - l ) ' + ( y - 2 f + ( z - 3 f =9vadudngthang A: ^ ^ ^ ^ ^ ^

190

Viet phuong trinh mat phSng (p) di qua M(4;3;4), song song voi duong

thang A va tie'p xuc voi mat cau (S)

Cau 9.a: Tim so phuc z thoa man phuong trinh z.z + z^ - ^z - 2zj = 10 + 3i

B Theo chUcrng trinh nang cao

Cau 7.b: Trong mat phMng tpa dp Oxy, lap phuong trinh chinh t3c cua elip ( E )

biet no CO mpt dinh va 2 tieu diem cua ( E ) tao thanh mpt tam giac deu va chu viciia hinh chii-nhat CO so cua ( E ) la 12^2+ V 3 J

Cau 8.b: Trong khong gian tpa dp Oxyz, cho hai duong thSng

Tim M thupc ( A , ) va N thupc Aj sao cho M N = 2N/6 va tam giac A M N

a) Danh cho ban dpc

b) Phuong trinh hoanh dp giao diem cua do thi ham so' (l) va duong thioig y = 2

^' x 3 - ( m 2 + m - 3 ) x + m 2 - 3 m + 2 = 2 < : > x 3 - ( m 2 + m - 3 ) x + m 2 - 3 m = 0

o (x - m)(x^ + mx - m + 3) = 0 o X = m hoac x^ + mx - m + 3 = 0 ( 2 )

Do thi ham so ( l ) c^t duong th^ng y = 2 tai 3 diem phan bi?t khi va chi

khi { 2 ) CO hai nghiem phan bi^t khac

Trang 6

Cau 5: Gpi H la hinh chieu vuong goc ciia S len mat phling ( A B C D ) , M la trung diem C D va O la tam ciia day A B C D Do A O la trung tuyen ciia tarn giac

I I PHAN RIENG Thi sinh chi dugc chpn lam mpt trong hai phan (phan A hoac B )

A Theo chUorng trinh chuan

Cau 7.a: G ^ i R la ban kinh duong tron can tim va F, G Ian lugt la hinh chieu

vuong goc ciia I tren dj va d j De thay I F = — , I G = ^

5 5

Laico: FB = VR^ - IF^ = JR^TI, G D = TR^TJ^ = ^R^ - ^6 www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 7

Tuife'u chQH & Giori thifu dethi Toiin HQC - Nguyen Phu Khduh , Nguyen Tii't Thu

Theo bai toan: A B + CD = 2(FB + GD) = ^ R

Cau 8.a: Gpi vecto phap tuyen n = (a;b;c) ciia m|t phang ( p )

Mat phang (P) song song v6i duong thang A -3a + 2b + 2c = 0

d(l;(P)) = R o - ^ = = ^ i ^ i _ = 3 < » ( b - 2 c ) ( 2 b - c ) = 0

VlSb^+Sbc + lSc^

Cau 9.a: Tim so' phuc z thoa man phuong trinh z.z + - - 2zj = 10 + 3i

Gpi z = X + yi (x,y e K),ta c6 z = x - yi va z^ = x^ - y^ +2xyi

Do cac dinh tren tryc Ion va Fj,F2 thMng hang nen Fj,F2 cung voi dinh B(0;b)

tren tryc nho tao thanh mpt tam giac deu

» c^ + b^ = 4c2 » b^ = 3c2 = 3(a2 - b^) <::> 3a2 = Ah^

Hinh chii nhat co so c6 chu vi 2(2a + 2b) = 12(2 + N/S) O a + b = 6 + 3\/3

CauS b: M thupc ( A J ) M(a;a;a +1), N thuQC Aj =>N(b;b + 2;-2b)

Tam giac A M N vuong tai A nen A M 1 A N <=> A M A N = 0

b(a2+b2+25) a^ + b^ = 6

DETHITHUfSOSO

PHAN CHUNG CHO TAT CA CAC T H I SINK

au 1: Cho ham so: y x'* - 2mx^ - 3 c6 do thj la (C^)

a) Khao sat sif bie'n thien va ve do thj (C_j) ciia ham so

b) Tim meM de ban kinh duong tron ngoai tiep tam giac c6 cac dinh la 3

"em cue trj ciia do thj ham so (C,^) dat gia trj nho nhat

au 2: Giai phuong trinh : sin3x = cosx.cos2x|tan2 x + tan2x

iu 3: Giai phuong trinh: x^ - 3x - 4 = V x ^ J x ^ - 4x - 2)

au 4: Tinh tich phan: I = |- 1 f 1 x +

ocos XI t a n ^ x - 4 dx

Cau 5: Cho hinh chop S.ABCD c6 day ABCD la nua luc giac deu va AB = BC =

CD = a Hai mat phing (SAC) va (SBD) cung vuong goc voi mat phSng day

195 www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 8

Tuyeit chgn 6- Gi&i thi?u dethi Todn hqc - Nguyen PM Khdnh , Nguyen Tat Thu

( A B C D ) Tinh theo a the ti'ch cua khol chop S A B C D biet r i n g khoang each

giiia hai duong thang A B va S D b i n g

Cau 6: Cho cac so thuc a,b,c thoa man (a + b + c)^ = 2^3^ + b^ + c^ j T i m gia

tri Ion nhat va gia t r i nho nhat cua bieu thuc : Q = -. ; x-j——; r

(a + b + c)(ab + bc + ca)

I I PHAN R I E N G T h i sinh chi dugrc chgn lam mpt trong hai phan (phan A

hoac B )

A Theo chUcTng trinh chuan

Cau 7.a: Trong mat phang toa dp Oxy, cho 2 duong tron ( C j ) : + = 13 va

( C j ) : (x - 6)^ + y^ = 25 Goi A la giao diem cita ( C j ) va (C2) voi y ^ < 0 Viet

phuong trinh duong thSng d i qua A va cat ( C j ) , ( C j ) theo 2 day cung c6 do

dai bang nhau

Cau 8.a: Trong khong gian v6i h^ toa do Oxyz, cho mat cau (S):

(x + l ) ^ + ( y - l ) ^ = 9 va diem A ( 1 ; 0 ; - 2 ) Viet phuong trinh duong thang

A tiep xiic voi mat cau (S) tai A tao voi tryc Ox mot goc a c6 cos a =

i z - ( l + 3i)z 2 Cau 9.a: Tim so phuc z thoa man dieu ki^n — = z

1 + i

B Theo chUtfng trinh nang cao

Cau 7.b: Trong mat p h i n g toa dp Oxy, cho hinh binh hanh A B C D v o i A(1;1) ,

B(4;5) Tam 1 cua hinh binh hanh thupc duong thSng ( d ) : x + y + 3 = 0 Tim

toa do cac dinh C, D biet rang di^n tich hinh binh hanh A B C D bang 9

Cau 8.b: Trong khong gian voi h^ toa do Oxyz, cho hai duong thang

( d i ) : ^ - ^ ^ = Y , ( d 2 ) : ^ = ^ ^ = Y va mat phSng (P) c6 phuong

trinh x + y - 2 z + 3 = 0 Viet phuong trinh duong thSng A song song v o i (P)

va cat d,,d2 Ian luot tai hai diem A , B sao cho A B = \/29

Cau 9.b: Tir cac so 1, 2, 3, 4, 5 c6 the lap dupe bao nhieu so t u nhien c6 nam chu

so, trong do chii so' 3 c6 mat dung ba Ian, cac chir so'con lai c6 mat khong qu^i

mot Ian Trong cac so' t u nhien noi tren, chpn ngau nhien mpt so', t i m xac suat

de so dupe chon chia he't cho 3

Cty TNHH MTV DWH Khang Vift

Phuong trinh cho tuong duong voi sin3x = ^"^^^"^'"^ % s i n 2 x c o s x

<=> sin x cos 2x + sin 2x cos x = cos2x.sin^x

o sinxcos2x = cos2x.sin^x

cosx

cosx sinx = 0 tan X = 1

cosx + sin 2x cosx

X = kTT

« 1

X = + krt

4

Doi chieu dieu k i f n, ta tha'y x = k:: thoa man

Vay, phuong trinh c6 1 hp nghi^m

Trang 9

-Cau 5: Gpi H la giao diem cua AC va BD Do (SAC) va (SBD) cimg vuong goc

voi mat ph^ng ( A B C D ) nen SH vuong goc voi ( A B C D ) Coi K la hinh chieu

vuong goc cua B len duong thang SD

Do A B C D la nua luc giac deu nen AB vuong

goc voi BD, ket hop voi AB vuong goc voi SH

Vay, VABCD = 3SH.SABCD " 3 y - 4 5

Cau 6: Gia thiet suy ra: a^ + + c^ = 2(ab + be + ca) 198

D|it x = a + b, suy ra (a + b)^ + = 4ab + 2cx => (x - c)^ = 4ab < (a + b)^ = x^

=> 0 < c < 2x Khi do: Q = Neu c = 0 thi Q = 0

( x c f

Neu o O , bang each datt = - > ^ thiQ=^*

( t l ) ,3 •

Xet f(t) = ^* ^\ voi t > i , taco f'(t) = O o t = l hoac t = 5 (t + l f 2

II PHAN RIENG Thi sinh chi dugrc chpn lam mpt trong hai phan (phan A hoac B)

A Theo chUcrng trinh chuan

Cau7.a: A (2;-3) la giao diem (C,) va (Cj)

Phuong trinh duong thang A di qua A c6 dang: a(x-2) + b(y + 3) = 0

Duong tron (Cj) c6 tam O(0;0), ban kinh Rj =>/l3

I Duong Iron (Cj) c6 tam l(6;0), ban kinh =5 Theogiathiet, suyra: R ^ - d ^ ( 0 , A ) = R ^ - d ^ ( l A ) =>x + 3y + 7 = 0

Cau 8.a: Mat cau c6 tam l(-l;l;0), ban kinh R = 3

GQ\ = (a;b;c) la vecto chi phuong cua A, tu gia thiet suy ra lA.n = 0

b = 2a - 2c A tao voi tryc Ox mpt goc a c6 cosa =

- = = = = = = o a = - c ho|c a = c

I , i(a + bi)-(l + 3i)(a-bi) , ,

Cau 9.a: Theo gia thiet, ta c6-^ ^ - = a + b

Trang 10

45 9

Vav, CO hai so phuc can tim la = 0, z, = — + — i

B Theo chuorng trinh nang cao

Cau7.b:Giasu C(a;b) =>I D o l e d = i > a + b + 8 = 0 ( l )

x - 1 v - l Phuang trinh duong thSng AB = o 4x - 3y - 1 = 0

Cau 9.b: Gpi aja2a3a4a5 la so tu nhien c6 nam chO so, trong do chii' so 3 c6 mat

diing ba Ian, cac chix so con lai c6 mat khong qua mpt Ian voi ai,a2,a3,a4,a5

6 {1; 2; 3; 4; 5]

S3p chix so 3 vao 3 vj tri, c6 C5 = 10 each

Con lai 2 vj tri, 4 chii so Chpn 2 chii so xep vao 2 vj tri do, c6 C4 = 12 each

Vay khong gian mau c6 10.12 -120 phan tir

Co ( l + 5);3;(2 + 4);3

Gpi A bien co: "so dupe chpn chia het cho 3" c6 2 phuong an

2 c h i f s o c o n l a i l a 1,5 c6 C5.2! = 20 so

2 chu so con lai la 2,4 C O C5 2! = 20 so

Vay bien co A c6 40 phan tu

I PHAN C H U N G CHO TAT CA CAC THI SINH

Cau 1: Cho ham so y = — ^ co do thj la (C)

x - 1 ^ '

a) Khao sat sy bien thien va ve do thj (C) ciia ham so'

b) Tim tat ca cac gia trj tham so m de duong thSng d: y = -x + m - 1 cat do thi (C) ham so tai hai diem A , B sao cho tam giac OAB npi tiep trong duong tron CO ban kinh R = 2\/2

Cau 2: Giai phuong trinh: cos 3x tan 5x = sin 7x

X ' ' + v'' = 5x — V Cau 3: Giai hf phuang trinh: \

e

Cau 4: Tinh tich phan: J = J In x - Vx dx

1 Cau 5: Cho hinh chop tu giac S.ABCD co day ABCD la hinh chCr nhat va AB = a,

BC = aVs Mat phang (SAC) va mat phang (SBD) vuong goc voi day, I thupc canh SC sao cho SI = 2CI va thoa man A I vuong goc voi SC Tinh the tich cua

khoi chop S.ABCD theo a

Cau 6: Cho cac so thuc x, y, z thoa man x^ + y^ + z^ = 9 Tim gia trj Ion nhat ciia bieu thuc: P = (9 + 2yz)(y^z^ - 4yz + s]

II PHAN RIENG Thi sinh chi dugc chpn lam mpt trong hai phan (phan A

hoac B)

A Theo chUorng trinh chuan Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC co dinh A(1;1), true tam H ( - 1 ; 3 ) , tam duong tron ngoai tiep l(3;-3) Xac djnh tpa dp cac dinh

Trang 11

B Theo chUcrng trinh nang cao

Cau 7.b: Trong mat phing toa dp Oxyz cho hinh bmh hanh ABCD c6 D(-6;-6)

Duong trung true cua doan DC c6 phuong trinh ( d ) : 2x + 3y + 17 = 0 va

duong phan giac goc BAC c6 phuong trinh (d'): 5x + y - 3 = 0 Xac djnh toa

dp cac dinh con lai cua hinh binh hanh

Cau 8.b: Trong khong gian tpa dp Oxyz, cho bon duong thang

Viet phuong trinh duong thSng A cat dupe ca bon duong th3ng da cho

Cau 9.b: Tim m de phuong trinh: 27" - 32"^^ +15.3" - m = 0 c6 nghi^m - 1 < x < 2

Hl/dTNGDANGlAl

I PHAN CHUNG CHO TAT CA CAC THI SINH

Cau 1:

a) Danh cho ban dpc

b) Phuong trinh hoanh dp giao diem ctia hai do thj

- ^ ^ = - x + m - l <=>g(x) = x^ - ( m - l ) x + m - l = 0 ( l ) vai x^l

Duong thSng d cat do thj tai hai diem phan bif t khi va chi khi phuong

trinh (1) c6 hai nghiem phan biet, khac 1

x2

A = ( m - l ) - 4 ( m - l ) > 0 o m < 1 hoac m > 5 (2)

g ( l ) = 1^0

Vdi (2) thi d cat do thj (C) ciia ham so tai hai diem A { X J ; - X J + m - l ) ,

B ( X 2 ; - X 2 + m - l ) , gpi X j , X2 la cac nghifm ciia (1), ta c6:

Cau 3: H? da cho tuong duong voi:

I Vay, phuong trinh cho CO nghiem la: X = m7t, , X = + ( m , k 6 Z )

Cau 5: Gpi O la giao diem cua A C va BD ^ ( S A C ) n (SBD) = S O , chung minh dupe S O 1 ( A B C D ) , A C = VBA^TBC^ = 2a O A = O C = a

DatSO = h =>SC = ^|S0^+0C^ =h^+a^

i i

203

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 12

V i SI = 2CI nen IC = ^SC =-Vh^ +

3 3 Tarn giac A I C vuong tai I

I I PHAN R I E N G Thi sinh chi dugc chpn lam mpt trong hai phan (phan A

hoac B )

A Theo chUorng trinh chuan

Cau 7.a: Goi D doi xung voi A qua I thi D ( 5 ; - 7 ) va D nSm tren duong tron

( C ) ngoai tiep tam giac A B C : (x - 3)^ + (y + 3)^ = 20

Gpi J.la trung diem cua H D thi J la trung diem ciia B C nen B C : x - y - 4 = 0

Tpa dp hai diem B , C la nghi^m cua h? phuang trinh: • "'"(>'•'• 3)

[ x - y - 4 = 0

Ma X g < XQ nen hai dinh can tim la B ( - 1 ; - 5 ) va C ( 5 ; l )

Cau 8.a: Goi vecto phap tuyen cua mat ph3ng (P) la n = (a;b;c) ^ 0

Do mat ph^ng ( p ) chua A , B nen n 1 B A trong do B A = (2; - 1 ; 2 ) , suy ra

2 a - b + 2c = 0 = > b - 2 a + 2c ( l )

Hon nCra mat phang (P) t^o voi mat phSng (Oxy) mpt goc ip sao cho

coscp = suy ra 5a^ + Sac - 4c^ = 0 (2)

T u ( l ) va (2) suy ra a = -2c hoac a = - c

5

Cty TNHH MTV DWHKhang Vi?t

Cau 9.a: Dieu kien

Vay, modun cua so phuc z la 3 hay Vs

B Theo chUorng trinh nang cao

Cau 7.b: Phuong trinh DC qua D va vuong goc (d) la: 3x - 2y + 6 = 0

Giao diem ciia DC va (d) la: M ( - 4 ; - 3 ) va cung la trung diem DC

Suy ra tpa dp C ( - 2 ; 0 ) Gpi C la diem doi xung cua C qua d ' thi C ' G A B , phuong trinh C C :

/ I 1^

x - 5 y + 2 - 0 Giao diem C C va d ' la I

U' 2 .Suy ra tpa dp C ( 3 ; l ) Phuong trinh A B qua C vuong goc (d) la: 3x - 2y - 7 = 0

Cau 8 b: dj di qua M(1;2;0)C6 vecto chi phuong i j j = ( l ; 2 ; - 2 )

d j d i q u a N (2; 2; 0)c6 vecto chi phuong Uj = (2;4;-4) = 2iaj d o d o d i / / d 2 Gpi (P) la mat phSng chua dj va d j thi (P) d i qua diem M ( l ; 2 ; 0 ) va c6

Vecto phap tuyen n = M N ; Qj = (O; 2; 2), do do c6 phuong trinh y + z - 2 = 0

Gpi A = d3 n (p) thi tpa dp A thoa h?:

Trang 13

Tuye'n chqn €t Gi&i thifu dethi Todn I I Q C - Nguyen Phti Khdttlt, Ngtii/en Tii't Tftu

x - 2 _ y _ z-T

2 ~ 2 ~ - 1 «

x = y + 2

y = 2-2z » ( x ; y ; z ) = (4;2;0):oB(4;2;0) 2-2z + z - 2 = 0

y + z - 2 = 0

Duong thSng A B nam trong mat phSng (P) cat tai A , cat d 4 tai B '

Duong thSng AB, d ^ d j ciing chua trong (P), ngoai ra AB = ^'2'~2

khong cung phuong voi Uj = (l;2;-2), do do AB cat dj va d j

Vay A chinh la duong th5ng AB di qua B(4;2;0),c6 vecto chi phuong

OETHITHlJfSOSl

I PHAN CHUNG CHO TAT CA CAC T H I SINK

Cau 1: Cho ham so' y = - — j - c6 do thj la (C)

a) Khao sat sy bien thien va ve do thj (C) cua ham so

b) GQI A , B la 2 giao diem ciia duong thang A: y = ^x voi do thj (C)

6 Tim toa do diem M thupc duong phan giac goc phan tu thu nha't sac cho

M A + M B CO gia trj nho nha't

Cau 2: Giai phuong trinh : 2 + yj2

Cau 5: Cho hinh chop S.ABC c6 day ABC la tam giac vuong can tai

AB = BC = aN/3, khoang each tir A den mat phSng (SBC) bSng aS

Cau 4: Tim

206

Cty TNHH MTV DWH Khang Vi?t

SAB = SCB = 90" Tinh the tich khoi chop S.ABC theo a va goc giua SB voi mat phing (ABC)

Cau 6: Cho a, b la cac so' thyc thoa man a^ + b^ = 4a - 3b Tim gia trj Ion nha't

va nho nha't cua bieu thuc: P = 2a + 3b

j l PHAN RIENG T h i sinh chi dvegc chgn lam mpt trong hai phan (phan A

hole B)

A Theo chiTomg trinh chuan Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC vuong tai A Dinh B(1;1), duong thing AC c6 phuong trinh: 4x + 3 y - 3 2 = 0, tren tia BC lay diem M sao cho BC.BM = 75 Tim dinh C bie't ban kinh ciia duong tron ngoai tie'p tam giac A M C bang

Cau 8.a: Trong mat phang tpa dp Oxyz, cho duong th3ng ( d ) : ^^=.X_^=£1?

va (P): - X + y + 2z + 5 = 0 Viet phuong trinh duong thiing d ' nSm trong mp

(P) dong thoi each d mpt khoang bang yjli

Cau 9.a: Cho so phuc z thoa man ding thuc 2z + i.z =

z + 2iz

1 + i Hay tinh gia trj ciia bieu thuc A =

B.Theo chUorng trinh nang cao Cau 7.b: Trong mat phSng tpa dp Oxy, cho AABC Bie't tpa dp diem A (2;-3) va B(3;-2), di^n tich tam giac AABC la — va trpng tam G ciia tam giac thupc (Juong thing A : 3 x - y - 8 = 0 Tim tpa dp diem C

x = - l + 3t Cau 8.b: Trong mat phang tpa dp Oxyz, cho duong thang d : y = 2 - 2t va hai

[z = 2 + 2t

<JiemA(l;2;-l), B(7;-2;3) Tun diem I thupc duong thing d sao cho l A + IB

•^ho nha't

b: Co ba hpp dung 5 vien bi trong do hpp thu nha't c6 1 bi trang, 4 bi

^^n; hpp thu hai c6 2 bi trSng, 3 bi den; hop thu ba c6 3 bi tring, 2 bi den Chpn

'^gau nhien mpt hpp roi tu hpp do lay ngau nhien ra 3 bi Tinh xac suat dupe ca

^biden

207 www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 14

Tuyen chgn &• Giai thiju dethi Todn h<?c - Nguyen Phii Khdnh , Nguyen Tat Thu

H(/(}NGDANGIAI

I PHAN C H U N G CHO T A T CA CAC THI SINH

Cau 1:

a) Danh cho ban dpc

b) Tpa dp A, B la nghi^m ciia phuong trinh:

A, B nam ve cimg phia doi v o i duong phan giac d: x - y - 0

GQI A'(a;b) la diem doi xung ciia A qua d nen c6:

Phuong trinh tham so cua A'B la :

K h i do M la giao diem cua A'B va d

Bie'n doi p h u o n g trinh t h u nhat: (x + y)"* - (x + y ) - 3xy (x + y)^ -1 = 0

3 2

X + y - 1 = 0 v i (x + y ) + (x + y) + x + y - 3xy (x + y ) - 3xy

= x^ + y"' + x^ + y^ - xy + X + y > 0 Phuong trinh t h u hai, tro thanh:

Trang 15

Dat a = t b , ( t ^ O ) thi P = ^ i i l ^ , xet ham so i{t) = ^ ^ ^ ^ , v o i

I I PHAN R I E N G T h i s i n h chi dupe chpn lam mpt t r o n g h a i p h a n (phan A

hoac B)

A Theo chUorng trinh chuan

Cau 7.a: Toa dp d i n h A(5; 4) Goi E la giao diem cua d u o n g tron ngoai tiep cua

tarn giac A M C v a i BA thi ta c6 BA.BE = BM.BC = 75 (vi M nSm tren tia BC), t i m

dupe toa dp cua E la E(13; lO) Tarn giac AEC v u o n g tai A nen C la giao cua

d u o n g tron tarn E, ban k i n h r = 575 v o i d u o n g thang A C Toa dp cua C la

4x + 3 y- 3 2 = 0

( x - i 3 f + ( y - 1 0 f = ( 5 7 5 ) '

CauS.a: ( d ) d i qua M ( 2 ; 3 ; - 3 ) , c6 veetochi p h u o n g u = ( 4 ; 2 ; l )

Xet d u o n g thSng (d') qua M , (d') nam trong (P) va (d') 1 ( d )

B Theo chUorng trinh nang cao

Cau 7.b: Gpi M la t r u n g diem AB => M (5 _ 5

Ngày đăng: 12/03/2017, 19:29

TỪ KHÓA LIÊN QUAN

w