1. Trang chủ
  2. » Khoa Học Tự Nhiên

luyện thi đại học môn toán

30 411 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 13,18 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tuye'n chQtt & Giai thifu dethi Todn UQC - Nguyen Phu Khanh, Nguyen Tai Thu.. PHAN RIENG Thi sinh chi dupe chpn lam mpt trong hai phan phan A hole B A... TwygH chgn & Giai thifu dethi To

Trang 1

Tuye'n chQtt & Giai thifu dethi Todn UQC - Nguyen Phu Khanh, Nguyen Tai Thu

nen A H = D H = ^ va B C ± ( A H D )

=> ( A B C ) 1 ( A H D )

Ke D K 1 A H => D K 1 ( A B C )

=>DAK = 45°, D A H = 45°

=> ADAK vuong can tai K

ADAH vuong can tai H

=>K = H : ^ D H l ( A B C )

Di^n tich tarn giac ABC la:

SABC = •^ABACsin60° = — ^

The tich khoi tu dien ABCD la V = - D H S A B C = T " = I T

Ke HE 1 AB => DE 1 AB Vay goc giiia 2 mp (ABD) va (ABC) la goc giua

hai duang thSng DE va HE va bang DEH

Gpi CF la duong cao xuat phat tir C cua tarn giac deu ABC canh a

nen co CF = , HE = - C F =

2 2 4 nen tan DEH = DH

HE = 2 =>DEH = arctan2

Vay, goc giua hai mp ( D A B ) va (ABC) la DEH = arctan2

Cau 6: Xet ham so: f(t) = ln(t + 1 ) - Vt+T voi t > - 1

Taco: f ( t ) = ^ " , ^ va f ( t ) = 0 o t = 3

^ ' 2(t + l ) ^ '

f'(t) doi dau tu duong sang am khi qua 3 nen f (3) la gia tri Ion nhat

Suy ra f (t) < f (3) < 0, do do f(x) + f(y) + f ( y ) < 0

hay In(x +1) + In(y +1) + ln(z +1) < Vx + 1 + ^ y + 1 + Vz + 1

I I PHAN RIENG Thi sinh chi dupe chpn lam mpt trong hai phan (phan A

hole B)

A Theo chi/ang trinh chuan

Cau 7.a: Duong tron c6 tam l(l;-2),ban kinh R = 3

Vi M e ( d ) nentpa dp M ( t ; t + l )

Cty TNHH MTV DWH Khang Vift

£)e tu M CO the ke dugc hai tiep tuyen den ( C ) thi I M > R <=> 2t^ + 4t +1 > 0

„ , > ^ h o , c , < - : ^ ( )

Phuong trinh di qua hai tiep diem A , B c6 dang:

( t - l ) ( x - l ) + (t + 3)(y + 2 ) - 9 = 0

3t + l : Ta c6: d ( N ; A B ) = ,

2V2t^+4t + 10 3t + l

Trang 2

TwygH chgn & Giai thifu dethi Toan hpc - Nguyen Phu Khanh, Nguyht Tat Thu

M $ t p h i n g (P) d i qua M(l; 2; 1) c6 vecto phap tuyen n = U j = ( l ; 2 ; - l )

p h u o n g trinh la: l ( x - l ) + 2 ( y - 2 ) - l ( z - l ) = 0 hay x + 2 y - z - 4 = 0

M^i phan g (P) d i qua M(5; 10; - 3 ) c6 vecto pha p tuye n n = U j = ( l ; 2 ; - l )

p h u o n g trinh la: l ( x - 5 ) + 2 ( y - 1 0 ) - l ( z + 3) = 0 hay x + 2 y - z - 2 8 = 0

Vay, C O 2 mat phang (P): x + 2 y - z - 4 = : 0 hoac x + 2 y - z - 2 8 = 0

Cau 9.a: T i m tat ca cac so phuc z , biet |z - 1 - 2if + zi + z = 11 + 2i (l)

G(?i so phijrc z = a + b i (a,b e # ) thoa man de bai

B Theo chUorng trinh nang cao

Cau 7.b: D u o n g tron (C) c6 t a r n ! ( - ; 2), R = 4 va diem I thuoc d u o n g thang A

D u o n g tron ( C ) c6 tam J ban k i n h R' = l va tiep xiic ngoai v o i d u o n g tron

(C) suy ra quy tich cua d i e m I la d u o n g tron ( K ) C 6 tam I ban k i n h R + R' = 5

h a y ( K ) : (x + l f + ( y - 2 f = 2 5

Khoang each ciia I t o i A la Ion nhat k h i I la giao diem cua d u o n g t h i n g d d i

qua J va v u o n g goc v o i A v o i d u o n g tron (K)

Vay, khoang each t u I t o i A Ion nhat bang 5

^ I t t S b : T i m dugc tpa dp d i e m A ( 7 ; 16; 1 4 ) G(?i U j , i 3 ^ , r i p Ian l u g t la cac vecto chi p h u o n g ciia d , A va vecto phap

t^yeh ciia ( P ) Gia s u u j = (a; b; c) a^ + b^ + c^ > 0

Neu x < y t h i p h u o n g trinh cho v6 nghi^m

Neu X = y t h i p h u o n g trinh t h u 2 tro thanh: x + V2x + 1 = 1 + Vx + 2

Trang 3

o£THiTHiirsdi9

I PHAN CHUNG CHO TAT CA CAC THI SINK

Cau 1: Cho ham so y = - 3x^ + (3m - 3)x + 2 c6 do thi la ( C „ )

a) Khao sat su bien thien va ve do thi (C) cua ham so khi m = 1

b) T i m m de ham so c6 eye d^i, eye tieu eiing v o i diem l ( - l ; - l ) t^o thanh

tam giae vuong tai I

Cau 2: Giai phuong trinh:

sin^ X - Vscos^x - i s i n 2x 2 (sin x - cos x) - — s i n 2x

Cau 3: Giai h § phuong trinh:

x 3 + ( 2 - y ) x 2 + ( 2 - 3 y ) x - 5 ( y + l ) = 0

Cau 4 , , , , ^ r fln^x-31nx + 3

: Tmh tich phan: I = -, r— d x

J x { l n x - 2 )

Cau 5: Cho tam di?n Oxyz c6 xOy = yOz = zOx = a Tren Ox, Oy, Oz lay cac

diem A, B, C sao cho OA = OB = OC = k > 0 T i m dieu ki?n eua a de t u di^n

OABC CO the tich Ion nha't

Cau 6: Cho a,b,e>0 thoaman: (a + b - e ) ( b + c - a ) ( e + a - b ) = l

Chung minh rang: ' a + b + c a^+b^+c^

II PHAN RIENG Thi sinh chi dugrc chpn lam mpt trong hai phan (phan A

hole 6)

A Thee chUorng trinh chuan

Cau 7.a: Trong mat phSng tpa dp Oxy, cho duong tron ( K ) : x^ + y^ = 4 va hai

diem A (0; 2), B ( 0 ; - 2 ) Gpi C, D (A A, B) la hai diem thupe ( K ) va doi xung

voi nhau qua true tung Biet r i n g giao diem E eua hai duong t h i n g AC, BD

n l m tren duong tron (KJ ) : x^ + y^ + 3x - 4 = 0, hay tim tpa dp eua E

Cau 8.a: Trong khong gian tpa dp Oxyz, cho hinh thoi ABCD eo dinh B thupc

trye Ox, dinh D thupe mat p h l n g (Oyz) va duong eheo AC nam tren duong

t h i n g d : = ^ = j T i m tpa dp cac dinh A, B, C, D ciia hinh thoi ABCP

biet di?n tich hinh thoi ABCD b i n g ISyJl (dvdt)

126

3 + 51

*Su 9.a: T i m so phuc z thoa man z + —^ 5i = 0

" z Theo chi/crng trinh nang cac

Cau 7.b: Trong mat p h i n g tpa dp Oxy, cho hinh thang vuong ABCD, vuong tai

va D Phuong trinh A D : x - yyjl = 0 Trung diem M eiia BC eo tpa dp M ( l ; 0)

giet BC = CD = 2AB T i m tpa dp eiia diem A

Cau 8.b: Trong khong gian toa dp Oxyz, cho mat phang ( ? ) : 2 x + y + z - 6 = 0

va m | t cau (S): x^ + y^ + z^ + 4x + 6y - 2z J-11 = 0 T u diem M tren (P) dyng tiep tuyen M N den mat cau ( N la tiep diem) Tim M de M N ngan nhat, tinh Idioang each ngan nhat do

Cau 9.b: Giai phuong trinh sau: ^ l o g ^ (x^ + 2x j - log j (x + 3) = logg - — ^

H(/dNGDiiNGlAl

I PHAN C H U N G C H O T A T C A C A C THf S I N H

C a u l : a) Danh cho ban dpc

b) Taeo: y' = 3x^ - 6 x + 3 m - 3 = 3(x^ - 2 x + m - l ) Ham so'CO eye dai, eye tieu khi y' = 0 eo hai nghi^m phan bi?t Xj, Xj, y' trift tieu va doi dau qua moi nghi^m, nghla la phai eo:

A ' > 0 < = > l - ( m - l ) > 0 o m < 2 Voi m < 2 thi do thj ham so luon eo eye dai A(xj;y(xj)), eye tieu B(x2;y(x2))

V i l y ' ^ ' ^ ^ = ° nen: jyi'^l) = ( 2 m " 4 ) x i + m + 1 [y'(x2) = 0 y(x2) = ( 2 m - 4 ) x 2 + m + l Khi do: I A = ( x i + 1 ; ( 2 m - 4 ) x i + m + 2), iB = ( x 2 + 1 ; ( 2 m - 4 ) x 2 + m + 2) Tam giae lAB vuong tgi I nen c6: lA.IB = 0

I o ( x i +l)(x2 + l ) + [ ( 2 m - 4 ) x j + m + 2 ] [ ( 2 m - 4 ) x 2 + m + 2] = 0

o ( 4 m ^ - 1 6 m + 17)xiX2 +(2m^ - 7 ) ( x i +X2) + m^ +4m + 5 = 0 (•) Theo dinh ly V i - et: xj + X2 = 2, Xj Xj = m - 1

K h i do (*) tro thanh:

127

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 4

|4m^ -16m + 1 7 J ( m - l ) + (2m^ - 7J2 + m^ + 4 m + 5 = 0

<=> 4m^ - 15m^ + 37m -26 = 0<=>m = l

Do'i chieu dieu ki$n ta c6 m = 1 la gia trj can tim

Cau 2: Phuong trinh cho tuong duong vai (s inx - cosx)^sin x + Vscosx - 2j = 0

sinx - cosx = 0 <=> tanx = 1 o x = — + krt, k e Z

Phuong trinh thu nhat tuong duong vai: x^ + 2x^ + 2x - 5 = y ^x^ + 3x + sj

o ( x - l ) ( x ^ +3x + 5) = y(x2+3x + 5) <^(x^ + 3x + 5)(x - y -1) = 0

THI: x^ + 3x + 5 = 0 ta thay v6 nghi?m

TH2: X - y -1 = 0 hay y = x -1 thay vao phuong trinh thu 2, ta dugfc:

Tuong tif, ta cung c6: BC = CA = AB = 2ksin j nen AABC deu

Trong hinh chop O.ABC ta c6 cac m|it ben deu la tam giac can t^i O day la

am giac deu ABC, nen A.ABC la hinh chop tam giac deu

Gpi G1^ trpng tam A A B C , the thi OG 1 ( A B C ) , khi do VO.ABC =-^&ABC-^

AN la duofng cao AABC deu

Taco: A N = — B C = k V S s i n

-2 -2

^ A G = ^ A N = ^ s i n P

3 3 2 Xet AAOG vuong t^i O , ta c6:

O G 2 = A 0 2 A G 2 = k 2 l s m ^

Dodo, V o A B C f - ^ l - - s i n 2 - (dvtt)

3 2 ^ ' DSt t = sin^ —, do 0 < a < — nen 0 < t < —

2 3 4 Khido: V o A B C = ^ k ^ , , t^ t^ voi te f 3^ 0;-

129

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 5

Tuyen CUQU & Gi&i thifu dethi Toan htn !sJ<^uii,'-ii I'hii Kh,ii:h \^u\ihi Iiil lUu.^

Dieu can chiing minh tro thanh: X + y • + z ^ + + + xy + yz + zx

Dat ^ + y + ^^ t > l K h i d 6 (•) tro thanh t^-|t2+i>() vai t > l

3 1 Xethamso: f ( t ) = t^ — t ^ + - voi t > l V ; 2 2

Taco: f (t) = S t ' ' - 3 t , voi V t > l thi f ' ( t ) > 0 dodo f(t) dongbie'n voi t > l

Tud6,tadu(?c f ( t ) > f ( l ) = 0

I I PHAN R I E N G Thi sinh chi dugic chpn lam mpt trong hai phan (phan A

hoac B)

A Theo chUorng trinh chuan

Cau 7.a: Vi C, D thupc duong tron (K) ma lai doi xiing voi nhau qua true tung

nen toa do 2 diem CO dang la: C(a;b), D(-a;b) (a,b ^O)

Taco: a^+h^-^^ ( l )

Plurong trinh duong thang:

A C : ( b - 2 ) x - a ( y - 2 ) = 0, BD:(b + 2)x + a{y + 2) = 0

{ 2a ( b - 2 ) x - a ( y - 2 ) = 0

Tu (l) va (2) suy ra 8a^ - 6ab = 0 o 4a = 3b

Cau8.a:Goi B(b;0;0), D(0;di;d2) la toa do thoadebai

Goi (Q) la mat phSng di qua B(b;0;0)va vuong goc vai duong thSng AC fien nhan u ^ ^ = ( 2 ; - l ; l ) lam vecto phap tuyen, nen c6 phuang trinh:

2 x - y + z - 2 b = 0 Goi I la trung diem AC nen I € d => I (-3 + 2 t ; - t ; t ) Han nOa, I cung la giao diem cua d va (Q), nen toa do diem I thoa phuang trinh:

YB + YD = 2 y i , tim du(?c:

^B ^^D

Vi AC nam tren duang thSng d nen goi t j , t2 e ^ sao cho:

A ( - 3 + 2 t i ; - t i ; t i ) , C ( - 3 + 2t2;-t2;t2) => A C = (2t2 - 2 t i ; t i - t j ; t j - t j ) Theo de bai ta c6 di^n tich hinh thoi bang 18N/2 , suy ra i A C B D = IsVi o^/6(v-tO^-3V3 = 18N/2 hay t 2 - t i = 2 ( l )

A B C D la hinh thoi nen c6: A B = C B => t j +1^ - 6 (2)

Tu (l) va (2) tadupc t j = 2 : ^ A ( 1 ; - 2 ; 2 ) , t2 = 4 =^C(5;-4;4)

Cau 9.a: Gia su z = x + yi, (x, y e ^ ) suy ra z = x - yi

Theo gia thiet, ta c6 : z.z + 3 + 5i - 5i.z = 0 <=> x^ + y^ + 3 + 5i - 5xi - 5y = 0

Trang 6

GQi I la tam mat cau, tam giac IMN vuong tai N, ta c6: IN^ + MN^ = IM^

Ma IN khong doi nen MN ngan nhat khi IM ngan nhat, tiic la M la hinh chieu

cua I len mat phang (?)

Cau 9.b: Dieu ki#n: x > 0

?huong trinh cho tuong duong vol

o log3 (x^ + 2x) + logg (x + 3) = log3 3 - logg (x +1)

log3[x(x + 2)(x + 3)(x +1)] = log3 3 o [ x ( x + 2)(x + 3)(x +1)] = 3

<=>]

o [ x ( x + 3)(x + 2)(x + l)] = 3 « (x2+3x)(x2+3x + 2) =3 (*)

D | t t = x^ + 3x, phuong trinh (•) tro thanh: t^ + 2t - 3 = 0 o t = -3, t = 1

V6i t = l tuc x^ + 3x = 1 <:> x^ + 3x - 1 = 0 o x = ~^ thoa dieu ki?n

Vol t = -3 tuc x^ + 3x = -3 o x^ + 3x + 3 = 0 phuong trinh nay v6 nghifm

Vly, phuong trinh cho c6 nghi?m x = -3 + M

Cty TNHHMIV I )VVI rKhangVi$t

DETHITH(jfSd20

I PHAN CHUNG CHO TAT CA CAC THI SINH

Cau 1: Cho ham so y = x"* - 2mx^ - 1 c6 do thj la (C^), m la tham so

a) Khao sat su bien thien va ve do thi (C) cua ham so khi m = 1

b) Tim m de ham so c6 ba eye trj tao thanh mot tam giac c6 dp dai c^nh day gap doi ban kinh duong tron ngogi tiep tam giac do

n (67rx - 371^ jcosx.sin^ x + 47i(l + sin^ x)

Cau 4: Tinh tich phan: I = '- = _ — 5 ^ ^ x

0 Vl + sin-'x

Cau 5: Cho hinh chop S.ABCD, day la hinh chu nhat c6 AB = 3, BC = 6, mSt

phJing ( SAB) vuong goc voi mat phMng day, cac mat phSng (SBC) va (SCD) cimg tao voi m | t phSng (ABCD) cae goc bang nhau Biet khoang each giua hai duong thSng SA va BD bSng S Tinh the tich khoi chop S.ABCD va cosin goc

giiia hai duong thing SA va BD

Cau 6: Cho a, b, c la cac so thyc duong thoa man a + b + c = 3

Chung minh rang : 8\/abc < 9

11 PHAN RIENG Thi sinh chi duQC chpn lam mpt trong hai phan (phan A

hoac B)

A Theo chiTorng trinh chuan

Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC vuong can tgi A,

phuong trinh BA: 2x - y - 7 = 0, duong thang AC di qua diem M ( - l ; 1) diem A nSm tren duong th3ng A: x - 4y + 6 = 0 Tim tpa dp cae dinh cua tam giac ABC biet rang dinh A eo hoanh dp duong

Cau 8.a: Trong khong gian voi hq tpa dp Oxyz, cho hai duong thang

x _ y + 1 _ z x - 1 _ y + 1 _ z - 4

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 7

Tuyen chqn & Gi&i thifu de thi Todn hqc - Nguyen Phu Khdnh , Nguyen Tat Thu

Viet phuong trinh duong t h i n g A cat ca hai duong t h i n g d ^ d j dong thoi

vuong goc v6i mat phang (P): x + 4 y - 2 z + 5 = 0

z - 1 = 5 va 17 z + z = 5zz

V >

B Theo chi/tfng trinh nang cao

Cau 7.b: Trong mat p h i n g toa do Oxy, cho 2 duong t h i n g Ian lugt c6 phuong

trinh la ( d j ) : 2x - 3y - 3 = 0 va ( d j ) : 5x + 2y - 1 7 = 0 Viet phuong trinh duong

t h i n g d i qua giao diem cua ( d j ) , ( d j ) Ian lugt cat cac tia Ox, Oy tai A va B

2

sao cho AB

' A O A B J

dat gia trj nho nha't

Cau 8.b: Trong khong gian voi h§ tga do Oxyz, cho diem A(3; - 2 ; - 2 ) va mat

p h i n g (P): x - y - z + l = 0 Viet phuong trinh mat p h i n g (Q) d i qua A, vuong

goc voi mat p h i n g (P) biet rang mat p h i n g ( Q ) cat hai tryc Oy, Oz Ian lugt

tai diem phan biet M va N sao cho O M = O N

Cau9.b: Giaibat phuong trinh: logj Vx^ - 5 x + 6 + log^ V x - 2 > ^ l o g j (x + 3)

Neu m < 0 thi y ' = 0 c6 1 nghiem x = 0 va doi da'u t u ( - ) sang ( + ) nen c6

1 cue trj ( khong thoa bai toan )

Neu m > 0 thi y' = 0 c6 3 nghi?m x = 0, x = - V m , x = \/m va doi da'u qua

moi nghiem nen ham so da cho c6 3 cue tri

Giasu: A ( 0 ; - l ) , B ( - V m ; - m ^ - l ) , c ( N / m ; - m ^ - l )

Tarn giac ABC can tai A nen canh day la BC vol:

BC = 2 V m , AB = AC = Vm + m *

Ta CO d i ^ n tich tam giac S ^ ^ B C = ^BC.d(A,BC) = m^%/m (dvdt)

Cty TNHHMTVjyWH Khang Vie

T U u - - - ' o AB.ACBC BC +

Theo bai toan, ta co: R = —— = —r- <=>

4S \ A B C 4m^%/rn = 4m

<=> m ' ^ - 2 m N / m + 1 = 0 <=> m = 1 (thoa man) Vay, m = 1 thoa man yeu cau bai toan

Cau 2: Dieu k i ^ n : x 5^ m - , m e Z

4

„, u u A sinx cos2x 2 { c o s x - l )

Phuong trinh cho tuong duong: + = — '—

cosx sin2x 2sin2xcos2x

1 cos X - 1

sin2x sin2xcos2x <=> cos2x = cos X - 1 o 2 cos^ x = cos x cos X = 0

1 « cos X = —

X e t h a m so: f { t ) = t^ + 2\/t voi t > 0 , ta c6: f ' ( t ) = 2t + - ^ > 0 i : i f ( t ) dong

v t

bien t > 0 , khi do phuong trinh: f(x + l) = f ( y ) o y ^ x + 1

Thay vao p h u o n g trinh t h u hai ta dugc: Vx + 1 + 7 x - 2 = 3

Trang 8

ruye'n chgn & Giai thifu dethi Todn hQC - Nguyen Phu Khdnh, Nguyen Tat Thu

Khi do I = (67rx - 3n^ j^Vl + sin' = 471^

Zau 5: Ha SH 1 A B => S H 1 ( A B C D ) (do (SAB) 1 ( A B C D ) = A B )

Ke H K 1 CD => t u giac H B C K la hinh chu nhat

Gpi P la goc giua hai duang thiing B D va S A => p = ( B D , S A ) = ( A K , S A )

Ta C O S K = 6V2,SA = A K = 3N/5 Trong tam giac S A K

A S ^ + A K ^ - S K ^ 45 + 45 - 72 1

cos S A K =

2AS.AK 2 3 V 5 3 V 5 5

Vgy p = SAK =

arccos-Cau 6: Ta c6: a^ + + c^ = (a + b + c)^ - 3{a + b)(b + c)(c + a) < 27 -24abc

Khi do: ?

3 V 3

V

D|t t = abc, ta C O 0 < t < a + b + c' = > 0 < t < l

Xet ham so: f (t) = ^ 9 - 8 t + 8 ^ voi t € (0;1^

Cty TNHH MTV P W H khang Vifi

Taco: f ( t ) = |

Nh$n thay, ( 9 - 8 t ) ^ - t ^ = 9 ( l - t ) ( 9 - 7 t ) > 0 =>f'(t)<0 vol mpi t 6 ( 0 ; l )

guy ra f (t) nghich bien voi mpi t e (0;l] va f (t) < f (l) = 9 Dang thiic xay ra khi a = b = c = 1

JI PHAN RIENG Thi sinh chi du-grc chpn lam mpt trong hai phan (phan A holcB)

A Theo chi/orng trinh chuan

Cau 7.a: Ggi diem A e A => A(4yo - 6; yg) nAC = (yo -1;5 - 4yo)

Tam giac ABC vuong can tai A, nen c6:

6 y o - 7 1 cosACB =

^ 5 ( l 7 y 2-42yo+26) ^

« 1 3 y 2 - 4 2 y o + 3 2 = 0<=>yo=2=>Xo=2 hoac yj, = ^ = > XQ = ( l o a i )

Vay,A(2;2), B(3;-1), C(5;3) la tpa dp can tim

Cau S.a: Phuong trinh tham so ciia d j :

Trang 9

Cau 9.a: Gia su z = x + y i (x, y e M^^ => z = x - y i

B Theo chUtfng trinh nang cao

Cau 7.b: Giao diem ciia ( d , ) va ( d 2 ) l a M ( 3 ; l )

Cdch 1: S,^oAB = ^ A B O H v o i H la chan d u o n g cao ha tir O len A B

AB N2

J O H ^ V i O H < O M OHmax = O M thi nho nhat O H '

K h i do A B nhan O M lam vec to phap tuyen Ta vie't duoc p h u o n g trinh A B

Cach 2: Phuong trinh d u o n g thang d c6 dang: a(x - 3) + b ( y - l ) = 0 ,(a,b > O)

Theo bai toan, ta t i m du^c:

Phuong trinh d u o n g thang can t i m la: 3x + y - 1 0 = 0

Cau 8.b: Gia su n g la m p t vecto phap tuyen ciia ( Q )

K h i do n Q l n p ( l ; - l ; - l )

M a t p h ^ n g ( Q ) cat hai tryc Oy va Oz tai M ( 0 ; a ; 0 ) , N ( 0 ; 0 ; b ) phan bi?t sao

cho O M = O N nen a = b o a = b^O hoac a = - b * 0

= { 0 ; 1 ; - 1 ) nen n ^ = u,np

K h i do mat p h l n g ( Q ) : y - z = 0

( Q ) c i t O y , Oz tai M ( 0 ; 0 ; 0 ) va N ( 0 ; 0 ; 0 ) (loai)

Vay, ( Q ) : 2x + y + z - 2 = 0

Cau 9.b: Dieu kien: x > 3

Phuong trinh da cho tuong duong:

Trang 10

Tuyen chgn & Giai thifu dethi Todn hgc - Nguyen Phu Khdnh, Nxuyht Tai Thu

OETHITHUfSdzi

I PHAN C H U N G C H O T A T C A C A C T H I S I N H

Cau 1: Cho ham so : y = x'^ - 3x^ + mx +1 c6 do thi la (C^^)

a) Khao sat sy bien thien va ve do thi (C) cua ham so khi m = 0

b) Tim m de ham so c6 cue dai, cxfc tieu Gpi (A) la duong thang di qua hai

diem eye dai, cue tieu Tim gia trj ion nhat khoang each tir diem I - ; — den

Cau 5: Cho hinh hpp dung ABCD.A'B'C'D' eo day la hinh thoi e^nh a, BAD=a

voi cosa=-, canh ben AA' = 2a Gpi M la diem thoa man DM = k.DA va N la

4

trung diem cua canh A'B' Tinh the tich khoi tu dien C'MD'N theo a va tim

kde C ' M I D ' N

Cau 6: Cho 3 so thuc khong am a, b, c thoa man a + b + c = 3 Tim gia tri nho

nhai cua bieu thuc: P = a + b^ + c^

II PHAN R I E N G Thi sinh chi dupe chpn lam mpt trong hai phan (phan A

hoac B)

A Theo chUorng trinh chuan

Cau 7.a: Trong mat phang tpa dp Oxy, cho tam giac ABC vuong tai A va diem

B(1;1) Phuong trinh duong thSng AC: 4x + 3y - 32 = 0 Tia BC lay M sao cho

5>/2 BM.BC = 75 Tim C biet ban kinh duong tron ngoai tiep tam giac AMC la — ^

Cau 8.a: Trong khong gian Oxyz, cho hai duong thSng (dj): = =

(d;): ^ 2 ~^ \ \g (P): x + y-2z + 5 = 0 Lap phuong

trinh duong thSng (d) song song voi m^t phSng (P) va cat (d^), ( d j ) Ian lupt

tai A, B sao cho dp dai doan AB nho nhat

Cau 9.^: Tinh modun cua so'phiic z, biet: z = (2 - i)"^ + ( l + i)'* - ^ — i -

0 Theo chUomg trinh nang cao

Cau 7.b: Trong mSt phSng tpa dp Oxy, cho hinh vuong ABCD eo phuong trinh duong thing AB: 2x + y - 1 = 0, va C, D Ian lupt thupc 2 dupng thing

d j : 3x - y - 4 = 0, dj : x + y - 6 = 0 Tinh di|n tich hinh vuong

x = - t Cau 8.b: Trong khong gian Oxyz, cho duong thang (d): y = 1 + 2t va mSt cau

[z = -3-2t (S): x^ + y^ + z^ - 2x - 6y + 4z -11 = 0 Viet phuong trinh mat phing (p) vuong goc duong thang (d), cat mat cau (S) theo giao tuyen la mpt duong tron c6 ban kinh r = 4

Cau 9.b: Tim so phue z thoa man (l - 3i) z la so thuc va z - 2 + 5i = 1

x _ l _

3 3 2m -2 x + — + 1 m , Chia da thiic y cho y', ta dupe: y = y'

Gia sir ham so c6 eye d^i, eye tieu t^ii cae diem (xi;yi),(x2;y2) •

Vi y'(xj) = 0,y'(x2) = 0 nen phuong trinh duong thing (A)qua hai diem

eye dgi, eye tieu la: y = r2m_2^ + ^ + 1 hay y = —(2x + l)-2x + l

( \

Ta thay, duong thang (A) luon di qua diem co'djnh A —;2 so'goc

|*a duong thing lA la k = | Ke IH 1 ( A ) ta thay d(l;A) = I H ^ I A = |

I Ding thuc xay ra khi I A ± ( A ) o ^ - 2 = - i = - - < » m = l V^y, max d ( l ; A ) = | k h i m = 1

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 11

Tuye'n chgn b Giai thi?u dethi Todu hgc - Nguyett Phu Khanh , Nguyen Tat Thu

Cau 2: Phuang trinh cho tuong duong voi phuang trinh:

sin3x + 3sinx = 4sin^ x.cosx + 2cosx + sinx-cosx

<=> sin 3x + s inx = 2 sin x.sin 2x + cos x - s inx

o 2 sin 2x.cos X - 2 sin 2x.s inx = cos x - s inx

<=>(cosx-sinx)(2sin2x-l) = 0 o c o s x = sinx hoac 2 s i n 2 x - l = 0

Voi cosx = sinx <=> x = — +

Cau 3: Dieu ki#n: x > 3

Phuong trinh cho tuong duong: 5(2Vx-3 - N/2X + I ) = 2X -13

Nhan 2 ve voi bieu thiic lien hg-p va dat thua so chung:

( 2 X- 1 3 ) ( 5 - 2 N / X ^ - N / 2 X + I ) = 0 c^x = y hoac 2N/)r^ + N/2X +1 = 5

, f x < 6 2^/x^ + ^ / 2 ^ = 5<=>27(x-3)(2x + l ) = 18-3x<^• X^ - 8 8 X + 336 = 0

z:>X = 4

13 Vgy, phuong trinh cho c6 nghiem la: x = - y , x = 4

D^t P(b) = 3 - b - c + b2+c^ voi be[U,3'

Taco: P'(b) = 2 b - 1 va P'(b) = O o b = i

Tirdo, ta duoc P > m i n P = c''-c + —

4 Xet P(c) = c 3 - c + J voi ce[0;3"

Theo chi/orng trinh chuan

7.a: Gpi I la tarn duong tron ngoai tiep tarn giac AMC

Vi B n i m ngoai duong tron ( l )

nen ta c6: BM.BC = BM.BC ( l )

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 12

V^y, phuong trinh duong t h i n g (d) la: = =

Phuong trinh duong trung tryc I N cua A C => A C n I N = N C ( 8 ; 0 ) hoac Ijifc^^/ ^ 4^ Dfb 6

C(2;8) ^ ^' ^ ' ^ ' ^ ^

Cdch2.Tu M d\mg M K 1 B C , ( K € A B )

G<?i I la trung diem K C => I la tarn duong tron ngogi tiep tam giac A M C

(Do t u giac A K C M npi tiep)

Cau 9.a: Ta c6: (2 - i) = 3 - 4i va ( l + i)'' = (2i)^ = -4

Ta C O A A B C dong d^ng A M B K nen: — = — A B B K = M B B C = 75

M B B K

Phuong trinh duong t h i n g A B qua diem B(1;1) va c6 VTPT (3; - 4 ) :

3 x - 4 y + l = 0

V i A la giao diem cua A B va A C nen A ( 5 ; 4 )

V i ABCD la hinh vuong nen j C D l n

Cau8.a:Dat A ( - l + a;-2 + 2a;a), B ( 2 + 2 b ; l + b ; l + b)

Mat p h i n g (P) vuong goc duong thang (d) nen phuong trinh mat p h i n g (P) bdang: - x + 2 y - 2 z + D = 0

I

=>AB = (-a + 2b + 3;-2a + b + 3;-a + b + l )

Do AB song song v o i (P) nen AB 1 np = ( l ; l ; - 2 ) <=> b = a - 4

Trang 13

d(l,(P),) = V R = - r 2 D + 9

4 ^ o D + 9 = 9<=> D = 0

D = -18

Vay, CO hai mat phang can tim la: - x + 2y - 2z = 0, - x + 2y - 2z - 1 8 = 0

Cau 9.b: Gia su z = x + y i , khi do ( l - 3i)z = ( l - 3i)(a + hi) = a + 3b + (b - 3a)i

I PHAN C H U N G C H O TAT CA CAC THI SINH

Cau 1: Cho ham so: y = x'' - 3x + 2 c6 do thj la (C)

a) Khao sat su bien thien va ve do thj (C) cua ham so

b) T i m toa do diem M thuoc duong thang (d) c6 phuong trinh y = -3x + 2

sao cho t u M ke duoc hai tiep tuyen toi do thi (C) va hai tiep tuyen do vuong

goc voi nhau

Cau 2: Giai phuong trinh: sinxcos2x + cos^ x|tan^ x - 1 j + 2sin"' x = 0

Cau 3: Giai h# phuong trinh:

A B C = 60" Hai mat p h i n g ( S A D ) va ( S B C ) la hai tam giac vuong Ian lugt tai

A va C Dong thai cac mat phMng nay ciing hop voi m^t day mpt goc a Tinh

the tich khoi chop S A B C D theo a va a

T-ty MTV DWH Khung Viei Cau 6: Cho a, b, c l a 3 sothuc duong thoa man: (a + c)(b + c) = 4c^

Tim gia tri Ion nhat cua bieu thiic: Q = — - — + —^— + ———

b + 3c a + 3c bc + ca

II PHAN RIENG Thi sinh chi du<?c chpn lam mgt trong hai phan (phan A hole B)

A Theo chUcrng trinh chuan

Cau 7.a: Trong mat phang tpa do Oxy, cho duong tron ( C ) : ( x - l ) ^ +(y+2)^ =4

M la diem di dpng tren duong thang d: x - y + 1 = 0 Chung minh rSng t u M ke dup-c hai tiep tuyen M T j , M T j toi (C) ( T j , Tj la tiep diem) va tim toa do diem M , bie't duong thang TjTj di qua diem A ( 1 ; - 1 )

Cau S.a: Trong khong gian toa do Oxyz, cho diem M(0; - I ; 2), N ( - l ; I ; 3)

Viet phuong trinh mat phang (R) d i qua M , N va tao voi mat phang (P):

2 x - y - 2 z - 2 = 0 mot goc nho nhat

Tinh mo dun ciia so'phuc w = z

B Theo chUtfng trinh nang cao

Cau 7,b: Trong mat phang toa do Oxy, cho hinh thoi ABCD c6 phuong trinh

hai canh AB va A D theo t h u t u la x + 2y - 2 = 0 va 2x + y +1 = 0 Canh BD chua diem M ( l ; 2) Tim toa dp cac dinh cua hinh thoi

Cau 8.b: Trong khong gian toa dp Oxyz, cho mat cau (S): (x - 2)^ + (y + 2)^ + (z - 1 f = 1

Tim toa dp diem M thupc tryc Oz sao cho t u Mice dupe ba tiep tuyen M A , MB,

MC toi mat cau (S) va diem D ( l ; 2; 5) thupc mat phSng (ABC)

a) Khao sat su bien thien va ve do thj (C) ciia ham so

b) Goi M ( a ; b ) la didm cSn t i m M e (d) => b =-3a + 2 Tiep tuyen cua do thj (C) t?i diem (xo;yo) la y=(3x^-3J(x-Xo)+x^-3xo+^ Cau 9.b: Giai he phuong trinh:

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Trang 14

Tuyin chgn & Giai thifu dethi Toi'ui hoc Nguyen I'lui Khdnh , Nguyen Tat Thu

Tiep tuyen d i qua M ( a ; b )

V|y CO hai diem thoa m a n de bai la: M

Cau 2: Dieu ki?n c o s x * 0

sinxcos2x + cos^ x t a n ^ x - l j + 2sin^x = 0

s i n x ^ l - 2 s i n ^ xj + 2sin^ x - 1 + 2sin^ x = 0 o 2sin^ x + s i n x - 1 = 0

Xet i{t) = t^+/t voi t ^ O T a c o : f ( t ) = 2t + ^ , f ' ( t ) > 0 v o l V t > 0

ham so' f ( t ) d o n g bien tren nua khoang [0;+oo)

f ^ > / x - 2 J = £ ( 3 - y ) o x - 2 = 3- y hay x = 5 - y , thay vao p h u o n g t r i n h t h u

Cty TNIIII M T V m'X'H KhangVi?

Cau 4: Dat: t = cos x = > d t = - s i n x d x

d u = - d t

t _ _ 1

Trang 15

Tuyi'n chgn b Giai thifu dethi Todn UQC - Nguyen Phii Khdnh , Nguyen Tilt Thu

Do tinh doi xurigcua x, y ta dat S = x + y, P = xy =>S + P = 3

=i> P = 3 - S > 0 hay S < 3 De ton tai S, P ta c6:

S 2 - 4 P > 0 < o S 2 - 4 ( 3 - S ) > O o S > 2

S ^ - 2( 3 - S ) + 3S ^ 3 - S ^ S ^ 3 3 3S + (3-S) + 9 S 2 S 2

Tom lai, voi 2 < S < 3, luon c6 Q :

A Theo chi/crng trinh chuan

Cau 7.a: Duong tron (C) c6 tam l ( l ; - 2 ) ban kinh r = 2, M nam tren d nen

M ( m ; m + 1) =:>IM = ^ ( m - l f + ( m + 3 f = ^ 2 ( m + l f + 8

Vi I M > 2 nen M nam ngoai (C), do do qua M ke Avtqc 2 tiep tuyeh toi (C)

Gpi J la trung diem I M nen toa dp diem J

Truong hop ( d j ) : x - y + 3 = 0

Duong thSng ( B D ) di qua M va vuong goc voi ( d , ) nen ( B D ) : X + y - 3 = 0 Suyra B - A B n B D = > B ( 4 ; - l ) , D = A D n BD => D ( - 4 ; 7 )

Gpi I = BD n { d ^ ) 1(0;3) Vi C doi xung voi A qua I nen C

Truong hop ( d 2 ) : 3x + 3y - 1 = 0 Ban doc lam tuong tu

4 13

3 ' 3 j

www.facebook.com/groups/TaiLieuOnThiDaiHoc01/

Ngày đăng: 12/03/2017, 19:29

TỪ KHÓA LIÊN QUAN

w