- Lớp của một bộ/mẫu dữ liệu được xác định bởi thuộc tính gán nhãn lớp - Tập các bộ/mẫu dữ liệu huấn luyện-tập huấn luyện – được dùng để xây dựng mô hình.. Bước 2: Sử dụng mô hình- Ph
Trang 1Thuật toán máy hỗ trợ vector (support vector machine-SVM)
Người hướng dẫn:CN.Vũ Tiến Thành
Sinhviên :Đinh thị Hương
Lớp : k52CA
Trang 2Nội dung chính
I.Phát biểu bài toán.
1.Trình bày tóm tắt về phân lớp dữ liệu
2.Tại sao lại sử dụng thuật toán SVM để phân lớp
Trang 3I.Phát biểu bài toán:
1.Trình bày tóm tắt về phân lớp dữ liệu
- Phân lớp dữ liệu là một kỹ thuật trong khai phá dữ liệu được sử dụng rộng rãi nhất và được nghiên cứu mở rộng hiện nay.
- Mục đích: Để dự đoán những nhãn phân lớp cho các bộ dữ liệu hoặc mẫu mới.
- Đầu vào: Một tập các mẫu dữ liệu huấn
luyện,với một nhãn phân lớp cho mỗi mẫu
dữ liệu
- Đầu ra:Bộ phân lớp dựa trên tập huấn
luyện,hoặc những nhãn phân lớp
Trang 4- Kỹ thuật phân lớp dữ liệu được tiến hành bao gồm 2 bước:
Trang 5
Bước 1 Xây dựng mô hình
- Mỗi bộ/mẫu dữ liệu được phân vào một lóp được xác định trước.
- Lớp của một bộ/mẫu dữ liệu được xác định bởi thuộc tính gán nhãn lớp
- Tập các bộ/mẫu dữ liệu huấn luyện-tập
huấn luyện – được dùng để xây dựng mô
hình.
- Mô hình được biểu diễn bởi các luật phân lớp,các cây quyết định hoặc các công thức toán học.
Trang 7Bước 2: Sử dụng mô hình
- Phân lớp cho những đối tượng mới hoặc
chưa được phân lớp
- Đánh giá độ chính xác của mô hình
+ Lớp biết trước của một mẫu/bộ dữ liệu đem kiểm tra được so sánh với kết quả thu
+ Tỉ lệ chính xác bằng phần trăm các mẫu/bộ
dữ liệu được phân lớp đúng bởi mô hình
trong số các lần kiểm tra
Trang 9- Các thuật toán phân lớp dữ liệu phổ biến:
+ Thuật toán cây quyết định
+ Thuật toán SVM
+ Thuật toán phân lớp Bayes
+ Thuật toán phân lớp K người láng giềng
gần nhất.
Trang 102.Tại sao lại sử dụng thuật toán SVM
trong phân lớp dữ liệu?
- SVM rất hiệu quả để giải quyết bài toán dữ
liệu có số chiều lớn(ảnh của dữ liệu biểu
diễn gene,protein, tế bào)
- SVM giải quyết vấn đề overfitting rất tốt (dữ
liệu có nhiễu và tách dời nhóm hoặc dữ liệu huấn luyện quá ít)
- Là phương pháp phân lớp nhanh
- Có hiệu suất tổng hợp tốt và hiệu suất tính
toán cao.
Trang 11II.Thuật toán SVM
1.Định nghĩa:
- Là phương pháp dựa trên nền tảng của lý
thuyết thống kê nên có một nền tảng toán học chặt chẽ để đảm bảo rằng kết quả tìm được là tối ưu
- Là thuật toán học giám sát (supervied
learning)được sử dụng cho phân lớp dữ liệu
- Là 1 phương pháp thử nghiệm,đưa ra 1
trong những phương pháp mạnh và chính xác nhất trong số các thuật toán nổi tiếng
về phân lớp dữ liệu
Trang 12- SVM là một phương pháp có tính tổng quát cao nên có thể được áp dụng cho nhiều loại bài toán nhận dạng và phân loại
-Ý tưởng chính của SVM: Là chuyển tập mẫu từ không gian biểu diễn Rn của chúng sang một không gian Rd có số chiều lớn hơn Trong không gian Rd, tìm một siêu phẳng tối ưu để
phân hoạch tập mẫu này dựa trên phân lớp của chúng, cũng có nghĩa là tìm ra miền phân bố của từng lớp trong không gian Rn để từ đó xác định được phân lớp của 1 mẫu cần nhận dạng
Trang 13I.Thuật toán SVM
2 Mục đích
- Là tìm ra hàm phân lớp hiệu quả nhất để phân biệt thành phần của các lớp trong việc huấn luyện dữ liệu
+ Ví dụ trong tập dữ liệu phân chia tuyến tính , hàm phân loại tuyến tính tương ứng với
1 siêu phẳng f(x) phân chia 2 tập hợp.khi
hàm này đc xác định thì bất kỳ 1 thể hiện mới sẽ được phân lớp đơn giản bằng việc xét dấu của hàm f( ) nếu thuộc về tập các giá dương thì
f( )>0 ngược lại thì thuộc tập các giá trị âm.
n X
n
X X n
n
X
Trang 14I Thuật toán SVM
3 Mô hình giải thuật
- Tính chất nổi trội của SVM là đồng thời cực tiểu lỗi phân lớp và cực đại khoảng cách lề giữa các lớp+ Giả sử có 1 số điểm dữ liệu thuộc một trong hai lớp,và mục tiêu của ta là xác định xem dữ liệu mới thêm vào sẽ thuộc lớp nào.Ta coi mỗi điểm dữ liệu như một vector p chiều và chúng ta muốn biết là
liệu có tách được những điểm đó bằng một siêu
phẳng p-1 chiều hay không( được gọi là phân loại tuyến tính)
Trang 15+ Xem dữ liệu đầu vào như 2 tập vector n
chiều,một SVM sẽ xây dựng một siêu phẳng
riêng biệt trong không gian đó sao cho nó tối
đa hóa biên lề giữa hai tập dữ liệu.
+ Để tính lề,hai siêu phẳng song song được xây dựng,mỗi cái nằm ở một phía của siêu phẳng
phân biệt và chúng được đẩy về phía hai tập dữ liệu.
+ Một cách trực quan,một phân biệt tốt sẽ thu được bởi siêu phẳng có khoảng cách lớn nhất đến các điểm lân cận của hai lớp,vì lề càng lớn thì sai số tổng quát hóa của bộ phân lớp càng tốt hơn.
Trang 16H3 (green) doesn't separate the 2 classes H1 (blue) does, with a small margin and H2 (red) with the maximum margin
Trang 17Trình bày với bộ phân lớp nhị phân
- Cho tâ âp dữ liê âu học gồm n dữ liệu gắn nhãn D={(x1, y1), (x1, y1), , (xn, yn)} với yi ∈ {-1,1}
là mô ât số nguyên xác định lớp của xi Mỗi xi
là mô ât văn bản được biểu diễn dưới dạng mô ât vector thực d chiều Bô â phân lớp tuyến tính (mô hình phân lớp) được xác định thông qua một siêu phẳng có dạng:
f(x) = w.x – b = 0
trong đó: w là vector pháp tuyến của siêu
phẳng và b đóng vai trò là tham số mô hình
- Bộ phân lớp nhị phân được
xác định thông qua dấu của f(x):
Trang 18- Để tìm được siêu phẳng phân cách có lề cực đại,xây dựng các vector hỗ trợ và các siêu phẳng song song với siêu phẳng
phân cách và gần vector hỗ trợ nhất,đó là các hàm :
w.x – b = 1 w.x – b = -1
- Khoảng cách giữa 2 siêu phẳng là do
đó cần phải cực tiểu hóa để đảm bảo với mọi i ta có:
w.x – b > 1 cho lớp thứ nhất
w.x – b <-1 cho lớp thứ hai
2 w
w
Trang 19Hình 1 Biểu diễn siêu phẳng lề cực đại cho bộ phân lớp SVM trên 2 lớp
Trang 20- Để đảm bảo là luôn tìm đc siêu phẳng phân
và Lp được gọi là hàm lagrange
+ vector và hằng số b xác định mặt phẳng
w uur
Trang 21- Với cách làm như trên thì ta có: yi(w.xi -b) -1
>0
vấn đề này được giải quyết bằng các kỹ thuật lập trình bậc 2.vector w biểu thị sự kết hợp giữa số hạng tuyến tính và đào tạo dữ liệu:
với xi là vector hỗ trợ,nó nằm trên lề và thỏa mãn yi(w.xi -b) =1 b =w.xi – yi
trên đây là một cách tương đối để xác định b Trong thực tế,nó sẽ chính xác hơn khi được tính theo công thức:
sv
x yi
N ∑= −
Trang 224.Câu hỏi
a.Có thể mở rộng mô hình SVM để xử lý trường hợp cho phép lỗi tồn tại,khi nào siêu phẳng tốt nhất cho phép tồn tại một số lỗi trong đào tạo dữ liệu?
b.Có thể mở rộng mô hình SVM trong tình
trường hợp dữ liệu không phân chia tuyến
tính?
c.Có thể thiết kế thuật giải trên cho việc tìm
siêu phẳng phân cách có lề cực đại cho hàng ngàn hay hàng triệu thực thể không?
Trang 235.Trả lời:
a.Có thể mở rộng mô hình SVM để xử lý trường
hợp cho phép lỗi tồn tại,khi nào siêu phẳng tốt nhất cho phép tồn tại một số lỗi trong đào tạo dữ liệu?
- giả sử có 1 số dữ liệu âm vượt quá giới
hạn,những điểm này thể hiện số lượng lỗi ngay
cả khi tồn tại mặt phẳng phân cách có lề cực đại.
- phương pháp lề mềm được sử dụng để mở
rộng bài toán SVM do đó siêu phẳng sẽ cho phép một số dữ liệu nhiễu tồn tại.
Trang 24- Phương pháp lề mềm (softmargin) được
sử dụng bằng cách đưa thêm một biến nới lỏng nó đo độ phân lớp sai cho dữ liệu x:
thỏamãn các ràng buộc
được tính bằng khoảng cách từ lớp dữ liệu bị lỗi đến hàm f(xn).do đó tổng giá trị các biến tạm được so sánh với giá trị của hàm cực tiểu ban đầu.
i
ξ
Trang 25Vd minh họa dữ liệu bị nhiễu
Trang 26b.Có thể mở rộng mô hình SVM trong
tình trường hợp dữ liệu không phân
chia tuyến tính?
- SVM ban đầu là một thuật toán phân lớp tuyến
tính,nhờ áp dụng các hàm kernel, thuật toán có thể
tìm ra các siêu phẳng trong không gian phi tuyến
đặc trưng biến đổi.
- Mở rộng tích vô hướng thông qua hàm ánh xạ
cho biến trong không gian H lớn hơn và
thậm chí có thể vô hạn chiều,theo đó đẳng thức vẫn
được giữ đúng.
Trong mỗi đẳng thức,khi chúng ta có tích vô hướng
thì chúng ta cũng tính được tích vô hướng
thông qua phép biến đổi các vectors
và nó được gọi là hàm kernel
Trang 27- Hàm kernel được sử dụng để xác định
nhiều quan hệ đầu vào không tuyến tính.
- Đối với hàm kernel tuyến tính ta có thể xác định được nhiều hàm bậc hai hoặc hàm mũ.
- Trong những năm gần đây ,nhiều nghiên cứu
đã đi sâu vào nghiên cứu các kernel khác
nhau cho sự phân lớp SVM và cho nhiều
thống kê thử nghiệm khác.
Trang 28c.Có thể thiết kế thuật giải trên cho việc tìm siêu phẳng phân cách có lề cực đại cho hàng ngàn hay hàng triệu thực thể không?
- Một trong những trở ngại ban đầu của SVM
là kém hiệu quả trong việc tính toán.
- Tuy nhiên vấn đề này đang được giải quyết thành công.
+ Cách tiếp cận :chia các vấn đề tối ưu hóa
lớn thành các vấn đề nhỏ hơn sao cho cuối
cùng chỉ gồm một vài biến được lựa chọn cẩn thận để sự tối ưu hóa đạt hiệu quả cao.Quá
trình này được lặp đi lặp lại cho đến khi tất cả các vấn đề tối ưu hóa được triển khai thành công.
Trang 29+Một cách tiếp cận mới gần đây là xem xét các vấn đề nghiên cứu về SVM là tìm ra một bao đóng nhỏ nhất của tập mẫu dữ liệu.
Với những mẫu dữ liệu này,khi ánh xạ vào không gian n chiều,đại diện của tập gốc
sẽ được sử dụng để xây dựng những bao
đóng xấp xỉ nhỏ nhất của tập mẫu dữ
liệu.Phương pháp này đạt hiệu quả rất cao.ta
có thể sử dụng máy core-vector để phân lớp được hàng triệu dữ liệu trong vài giây.
Trang 305.Transductive support vector machine
(TSVM)
- Là một mở rộng của support vector
machine chuẩn với dữ liệu chưa gán nhãn.
- Mục tiêu là tìm một gán nhãn của các dữ
liệu chưa gán nhãn, sao cho tồn tại một biên tuyến tính có lề cực đại trên cả dữ liệu gán nhãn ban đầu và dữ liệu chưa gán nhãn.
-Giả sử có L mẫu được gán nhãn và U mẫu chưa được gán nhãn gọi là tập U
Trang 31- Cực tiểu hóa theo các biến ( ) hàm mục tiêu:
cả 2 không còn nhỏ thua tham số người dùng C* nữa. C+* C−*
Trang 32Ví dụ minh họa TSVM
- các dữ liệu đã gán nhãn,siêu phẳng có phân
cách lề cực đại là đường chấm chấm,
- với các dữ liệu chưa gán nhãn(các điểm
đen)thì siêu phẳng có phân cách lề cực đại là đường thẳng màu đen
Trang 33III.Ứng dụng của SVM: Sử dụng trong phân loại và nhận dạng
- Trong việc nhận dạng chữ viết tay tiếng Việt
+Dựa trên cơ sở các thành phần liên thông của ảnh,phân tập ký tự tiếng Việt
thành 3 nhóm (box,dạng chữ rời,dạng chữ liên tục) và tách các ký tự có dấu thành các phần rời nhau.
+Sau đó xây dựng máy phân lớp SVM để nhận dạng cho từng phần chữ và phần dấu.
+ Kết quả thực nghiệm cho thấy mô hình nhận dạng có độ chính xác tương đối cao.
Trang 34- Trong nhận dạng mặt người :
+Giai đoạn huấn luyện: các ảnh mẫu được
vector hóa x= { } rồi dùng phương pháp PCA để rút trích đặc trưng thành vector
y ={ } rồi đưa vào bộ huấn luyện SVM
+Giai đoạn nhận dạng:Mẫu cần nhận dạng
được vector hóa và rút trích như trên sau đó đưa vào bộ nhận dạng SVM để xác định lớp cho mẫu.
1 , , 900
1 , , 100
Y K Y
Trang 35- Phân tích vi ảnh protein subcelluar location
+ Ảnh đầu vào được tiền xử lý thông qua các thuật giải khử nhiễu, điều chỉnh tự động cường
độ sáng.
+ Thuật giải MRF [9] cũng được áp lên
ảnhnhằm thực hiện segmentation để phân biệt
rõ phần nhân và các phần khác của ảnh.
+Biến đổi mô tả trong phần 2 được áp trên các ảnh đầu vào với tối đa 8 tỉ lệ phân rã khác nhau + Bước phân lớp được thực hiện với thuật giải SVM đa tỉ lệ cho phù hợp với tính chất đa phân giải của các hệ số sau khi biến đổi
Trang 36Tài liệu tham khảo:
- tài liệu tham khảo chính: [3] Xindong Wu, Vipin Kumar,
J.Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, Philip
S Yu , Zhi-Hua Zhou, Michael Steinbach, David J Hand, Dan Steinberg, Top 10 algorithms in data mining, Knowl Inf Syst (2008)
- [CV95] Corinna Cortes, Vladimir Vapnik (1995)
Support-Vector Networks, Machine Learning, 20(3): 273-297
- http://en.wikipedia.org/wiki/Support_vector_machine
- Nguyễn Thị Hương Thảo, Nguyễn Thị Thùy Linh, Nguyễn Thu
Trang, Hà Quang Thụy (2007) Một giải pháp học bán giám sát SVM phân lớp trang web tiếng Việt, Baos cao FAIR 07, Nha Trang
Trang 37Xin chân thành cảm ơn!