1. Trang chủ
  2. » Giáo án - Bài giảng

tiet 20: can bac hai

23 508 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Căn Bậc Hai
Trường học Trường Đại Học Sư Phạm
Chuyên ngành Toán Học
Thể loại Tiết Học
Thành phố Hà Nội
Định dạng
Số trang 23
Dung lượng 1,62 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính đối xứng của đồ thị •P 0 có trục đối xứng là trục tung... đường thẳng x = làm trục đối xứng và hướng bề lõm lên trên khi a> 0, xuống dưới khi a.

Trang 1

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

chµo mõng quý

thÇy, c« cïng

c¸c em häc sinh tham dù tiÕt häc!

Trang 2

1 §Þnh nghÜa: Hµm sè bËc hai lµ hµm sè ®­îc cho b»ng

1 §Þnh nghÜa :

Trang 3

Tiết 20 Hàm số bậc hai Hàm số bậc hai (T (T1)1)

*Parabol (P 0 ) hướng bề lõm lên trên khi a > 0 và xuống dưới khi a < 0.

Đồ thị hàm số y = ax 2 (a ≠ 0) là Parabol (P o ) có các đặc điểm sau :

Toạ độ đỉnh của parabol (P 0 ) là điểm nào

Toạ độ đỉnh của (P 0 ) là điểm O(0;0 ).

Tính đối xứng của đồ thị

(P 0 ) có trục đối xứng là trục tung

1 Định

nghĩa:

Trang 4

* Điểm O(0; 0): đỉnh của Parabol (P o )

Đó là điểm thấp nhất của đồ thị trong trường hợp a > 0 (y ≥ 0 với x ),và là

điểm cao nhất của đồ thị trong trường hợp a < 0 (y ≤ 0 với x )

Trang 5

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

b 2a

Trang 6

Nh­ vËy nÕu gäi (P 0 ) lµ Parabol y = ax 2

(a ≠0) Ta thùc hiÖn qua hai phÐp tÞnh tiÕn liªn tiÕp nh­ sau:

Trang 7

Tiết 20 Hàm số bậc hai Hàm số bậc hai (T (T1)1)

Phép tịnh tiến thứ nhất, đỉnh O của (P o ) biến thành

Cho biết toạ độ của I 1 và trục đối xứng của (P 1 )

Tìm tọa độ của I và trục đối xứng của (P)

Trang 8

đường thẳng x = làm trục đối xứng và hướng bề lõm lên trên khi a> 0, xuống

dưới khi a<0.

-b 2a

-4a -b

2a

4a

Trang 9

Tiết 20Phiếu học tập số 1Hàm số bậc hai Hàm số bậc hai (T (T1)1)

Parabol Hướng bề lõm Toạ độ đỉnh Trục đối xứng Cắt Oy tại Cắt Ox tại

4 3

-1 3

1 3 X=

X= 2

C(0; 1)

C(0; 4)

A( ; 0), B(1; 0) A(2; 0)

Trang 10

*Căn cứ vào tính đối xứng, bề lõm và hình dáng của (P) để ≠nối≠ các điểm đó lại.

b 2a

Trang 11

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

*VÝ dô minh ho¹ : VÏ c¸c (P) sau:

Trang 13

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

Trang 14

x 2

y

O

4

x 2

y

O

2 1

3

5 4

Trang 15

Tiết 20 Hàm số bậc hai Hàm số bậc hai (T (T1)1)

.Tập xác định : R

nhận đường thẳng x = - làm trục đối xứng và hướng bề lõm lên trên khi a> 0, xuống dưới khi a<0.

Kiến thức cần nhớ qua tiết học này :

-Xác định hướng của bề lõm, toạ độ đỉnh, phương trình trục đối

2a

Trang 17

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

y

-1

x 2

0

1

y

4a

-x = - b

2a

a > 0

S O

y

x

4a

-x = - b

2a

a < 0

S O

Trang 18

KT

Trang 19

Tiết 20 Hàm số bậc hai Hàm số bậc hai (T (T1)1)

A Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi lên trên 2 đơn vị

B Tịnh tiến parabol (P): y = -3x 2 sang phải 1 đơn vị, rồi

Trang 20

A Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi lên trên 2 đơn vị

B Tịnh tiến parabol (P): y = -3x 2 sang phải 1 đơn vị, rồi lên trên 2 đơn vị

C Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi

Trang 21

Tiết 20 Hàm số bậc hai Hàm số bậc hai (T (T1)1)

A Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi lên trên 2 đơn vị

B Tịnh tiến parabol (P): y = -3x 2 sang phải 1 đơn vị, rồi lên trên 2 đơn vị

C Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi xuống dưới 2 đơn vị

D Tịnh tiến parabol (P): y = -3x 2 sang phải 1 đơn vị , rồi xuống dưới 2 đơn vị

Trang 22

A Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi lên trên 2 đơn vị

B Tịnh tiến parabol (P): y = -3x 2 sang phải 1 đơn vị, rồi lên trên 2 đơn vị

C Tịnh tiến parabol (P): y = -3x 2 sang trái 1 đơn vị, rồi

Trang 23

TiÕt 20 Hµm sè bËc hai Hµm sè bËc hai (T (T1)1)

y

O

x y

O

10

x 2

y

O

4

x 2

c

e d

Ngày đăng: 15/06/2013, 01:26

HÌNH ẢNH LIÊN QUAN

2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 3)
2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 4)
2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 6)
2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 7)
2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 8)
2. đồ thị của - tiet 20: can bac hai
2. đồ thị của (Trang 11)
Cho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể - tiet 20: can bac hai
ho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể (Trang 19)
Cho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể - tiet 20: can bac hai
ho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể (Trang 20)
Cho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể - tiet 20: can bac hai
ho hàm số y =-3x 2 -6x+2. Đồ thị hàm số này có thể (Trang 22)

TỪ KHÓA LIÊN QUAN

w