Song để tránh sự chủ quan quá đáng, công việc này nên được tiến hành bởi một nhóm cộng tác có tính chất đa ngành và sử dụng các cách làm như gửi bảng câu hỏi, phỏng vấn chuyên gia, lấy ý
Trang 1ĐẠI HỌC THÁI NGUYÊN Trường Đại Học Sư Phạm
NGUYỄN VĂN HỘ (Biên Tập Và Hệ Thống Hóa Tư Liệu)
DỰ BÁO PHÁT TRIỂN GIÁO DỤC
(Tài Liệu Dùng Cho Học Sinh Cao Học QLGD)
THÁI NGUYÊN 2007
Trang 2PHẦN THỨ NHẤT MỘT SỐ VẤN ĐỀ LÝ LUẬN
VỀ DỰ BÁO GIÁO DỤC
I Cơ sở phương pháp luận của dự báo giáo dục
1 Nhu cầu của công tác dự báo trong nghiên cứu xây dựng chiến lược phát triển kinh tế - xã hội ở Việt Nam
1.1 Dự báo trong nền kinh tế thị trường
Đại hội VIII của Đảng Cộng sản Việt Nam đã xác định những nội dung cơ bản nhằm đổi mới công tác kế hoạch hóa trong đó chú trọng nâng cao chất lượng công tác xây dựng chiến lược và quy hoạch phát triển kinh tế - xã hội, các ngành, các vùng lãnh thổ và tòan bộ nền kinh tế quốc dân Quán triệt tinh thần trên, trong những năm gần đây, kế hoạch đã chuyển dần từ kế hoạch pháp lệnh sang kế hoạch định hướng
Nếu so sánh với giai đoạn trước nam 1989, nền kinh tế Việt Nam đã thay đổi không chỉ về mặt số lượng mà quan trọng hơn chất lượng cũng đang biến đổi Theo đánh giá của nhiều chuyên gia quốc tế, nền kinh tế Việt Nam hiện nay
có nhiều điểm khác biệt với các nền kinh tế đang chuyển đổi Trong quá trình chuyển sang nền kinh tế thị trường, những yếu tố kinh tế cũ vẫn tồn tại, song hành với những nhân tố mới, pha trộn lẫn nhau, có lúc có lĩnh vực yếu tố này hay yếu tố kia biểu hiện nhiều hơn Chính vì vậy muốn xây dựng các phương pháp định lượng cho nền kinh tế phải nhận dạng được những đặc điểm cơ bản chi phối các quy luật phát triển
Nền kinh tế Việt Nam hiện nay và trong tương lai gần chưa phải là nền kinh tế thị trương, càng chưa phải là môi trường tự do hoàn hảo Tuy nhiên, với mục tiêu dân giàu nước mạnh, xã hội công bằng, dân chủ, văn minh nước ta chủ trương chuyển dần sang nền kinh tế thị trường theo định hướng xã hội chủ nghĩa Trong cơ chế thị trường, công tác dự báo đóng vai trò quan trọng bởi lẽ
nó cung cấp các thông tin cho việc bố trí các nguồn lực quan trong tương lai Với những thông tin này cho phép các nhà hoạch định chính sách có những quyết định về đầu tư Nhìn chung, những quyết định về đầu tư sẽ có ảnh hưởng đến sự phát triển kinh tế 5-10 năm hoặc lâu hơn nữa Những quyết định mang tính chiến lược như có xây dựng nhà máy điện nguyên tử hay không sẽ ảnh hưởng trong khoảng 30 năm đối với một quốc gia, đấy là chưa nói đến ảnh hưởng tới môi trường Các thông tin về dự báo kinh tế còn cho phép xem xét các quyết định về sản xuất, về tiết kiệm tiêu dùng, các chính sách tài chính, các
Trang 3chính sách kinh tế vĩ mô Dự báo không chỉ tạo cơ sở khoa học cho việc hoạch định chính sách, cho việc xây dựng chiến lược phát triển, cho các quy hoạch tổng thể mà còn cho phép xem xét khả năng thực hiện kế hoạch, và hiệu chỉnh
kế hoạch Có thể nói các dự báo tốt cũng sẽ cung cấp thông tin cho quá trình nhận thức, ra quyết định và xem xét tác động của các lĩnh vực khác nhau, từ vĩ
mô đến vi mô, từ bình diện cả nước đến các vùng lãnh thổ, từ tòan bộ nền kinh
tế đến các ngành thậm chí đến các công ty Từ sự cần thiết khách quan này nên
ở các nước, ngoài những cơ quan nghiên cứu về dự báo còn có các bộ phận làm
dự báo của các công ty tư nhân
1.2 Các loại dự báo, mối quan hệ giữa chúng
Thông thường người ta phân biệt hai cách tiếp cận để đoán nhận tương lai, cách thứ nhất dành cho các quá trình mà con người có thể và chủ động tác động đến quá trình phát triển Loại dự báo này mang tính chất kiến thiết (trong tiếng anh thường dùng thuật ngữ Projection để gọi), cho dù chế độ xã hội có khác nhau nhưng bất cứ nền kinh tế nào cũng có thể sử dụng cách tiếp cận này để dự tính các quỹ đạo phát triển trong tương lai của đất nước mình theo các kịch bản khác nhau Ở các nước xã hội chủ nghĩa trước kia, với cách quản lí nền kinh tế theo cơ chế kế hoạch hóa tập trung, phấn đấu theo mục tiêu cho trước, dự báo theo cách tiếp cận thứ nhất này thường hay được sử dụng với thuật ngữ “Dự báo chủ động” Do tính chất của loại dự báo này nên việc vận dụng thường cho tầm trung và dài hạn
Đối với các dự báo ngắn hạn (hàng năm, quý, tháng), sự tác động của con người nhìn chung bị hạn chế, các quy luật tự nhiên, kinh tế - xã hội chi phối những gì sẽ xảy ra trong tương lai Việc đóan nhận tương lai sẽ chủ yếu dựa trên
sự kéo dài những quy luật đã hình thành trong quá khứ Loại dự báo trên cách tiếp cận này chứa đựng nhiều nội dung mang tính khách quan hơn (theo thuật ngữ tiếng Anh thường gọi là foretcast)
1.3 Các dự báo trung và dài hạn
Đối với việc nghiên cứu chiến lược phát triển giáo dục dài hạn đến năm
2020, các dự báo trung hạn và dài hạn vô cùgn quan trọng Tùy theo vấn đề mà tầm thời gian của dự báo trung hạn và dài hạn có thể thay đổi chút ít, tuy nhiên nói đến dự báo trung hạn người ta thường hiểu là khoảng thời gian bao quát khoảng trên dưới 5 năm trong khi các dự báo dài hạn có thể có tầm 10 năm hoặc
xa hơn Đối với các nước đang phát triển, các dự báo có tầm trung hạn rất có ý nghĩa trong việc xây dựng kế hoạch 5 năm, còn các dự báo dài hạn chủ yếu mang tính định hướng, tập trung vào một số lĩnh vực quan trọng
Trang 4Trong bối cảnh phát triển hiện nay của thế giới, và sự phát triển năng động của khu vực, nhìn chung để có dự báo chính xác là rất khó kể cả trong tầm ngắn hạn, với trung hạn và dài hạn lại càng khó hơn, chính vì vậy việc cập nhật thường xuyên các dự báo là cần thiết, nhằm cung cấp những thông tin mới nhất cho các nhà hoạch định chính sách
Cập nhật các dự báo được hiểu nghĩa đưa những thông tin mới nhất vào các kết quả dự báo, hiểu theo nghĩa hẹp nhất đó là tính toán, hiệu chỉnh lại các dự báo khi có nguồn thông tin mới (số liệu mới, dữ liệu mới), mặt khác cập nhật dự báo cũng có thể hiểu theo nghĩa rộng hơn là việc bổ sung phương án mới, đưa
ra kịch bản mới, cải tiến mô hình khi có nguồn thông tin mới
2 Qui trình thiết lập dự báo
Để thiết lập một dự báo, về cơ bản, chúng ta có các bước tiến hành sau đây: a) Xác định vấn đề và lựa chọn chân trời dự báo;
b) Xây dựng hệ thống và phát hiện những biến số then chốt;
c) Thu thập số liệu và hình thành các giả thiết
d) Xây dựng các tương lai khả dĩ
2.1 Xác định vấn đề và lựa chọn triển vọng dự báo
Công việc đầu tiên là phát biểu vấn đề dự báo một cách rõ ràng và chính xác Điều này dường như là đương nhiên nhưng thật ra sự nhấn mạnh tầm quan trọng của nó không phải là thừa, vì rất có thể xảy ra tình trạng vấn đề đặt ra lúc đầu, đến một giai đoạn nào đó của quá trình dự báo, bắt đầu được nhận thức là chưa đủ rõ ràng và vì vậy các công việc tiếp theo không thể đặt ra một cách cụ thể để có thể giải quyết và chúng ta lại phải trở lại việc xác định vấn đề
Một vấn đề khác là sự lựa chọn triển vọng của dự án Có nhiều nhân tố chi phối sự lựa chọn này, như kỳ hạn bạn ra quyết định, khả năng quyết định và các phương tiện hành động, v.v… Không có một phương pháp xác định nào có thể giúp ta làm thay đổi việc này Kinh nghiệm thực tiễn và sự nhạy cảm là những yếu tố có thể đóng góp vào sự lựa chọn tối ưu Các dự báo đã có về các vấn đề khác nhau rõ ràng là một nguồn tham khảo quan trọng
2.2 Xây dựng hệ thống và phát hiện các biến số then chốt
Công việc tiếp theo là xác định trạng thái hệ thống, cụ thể là tìm ra tất cả các biến số có ảnh hưởng đến vấn đề được nghiên cứu hoặc chịu ảnh hưởng của vấn đề được nghiên cứu, phân tích các quan hệ giữa các biến số đó, và cuối cùng thu gọn phạm vi của hệ thống về một biến số có tính chất cơ bản các biến số then chốt
Trang 5Có thể giao việc lập danh mục các biến số xác định trạng thái của hệ cho một người Song để tránh sự chủ quan quá đáng, công việc này nên được tiến hành bởi một nhóm cộng tác có tính chất đa ngành và sử dụng các cách làm như gửi bảng câu hỏi, phỏng vấn chuyên gia, lấy ý kiến tư vấn, v.v…
Để phân tích quan hệ giữa các biến số, phương pháp thường được sử dụng
là phân tích cấu trúc gồm ba bước cơ bản như sau:
- Thống kê các biến số;
- Xây dựng ma trận phân tích cấu trúc và lập đồ thị phát động – phụ thuộc;
- Phát hiện các biến số then chốt
2.3 Thu thập dữ liệu và hình thành các giả thiết
Thu thập dữ liệu là một công việc rất nặng nề vì đối với mỗi biến số, người
ta cần phải trả lời 3 câu hỏi sau đây:
a) Diễn biến của biến số trong quá khứ?
b) Xu hướng phát triển của biến số đó trong tương lai (ngoại suy một cách hợp lý)?
c) Những điểm uốn hay gián đoạn có thể làm thay đổi xu hướng phát triển của biến số?
Để trả lời các câu hỏi này, ta cần xem xét 5 vấn đề sau đây:
- Xác định những chỉ tiêu có thể sử dụng một cách thích hợp để mô tả diễn biến của biến số được xét Thí dụ như để mô tả mức sống của dân cư, có thể xét khả năng sử dụng chỉ tiêu GNP, để đánh giá năng lực đổi mới công nghệ của một quốc gia, có thể sử dụng chỉ tiêu số sáng chế đăng ký,v.v
- Xét khả năng có được dữ liệu (định tính cũng như định lượng), độ tin cậy của chúng và nếu có thể, mức độ cân đối cần phải có
- Xác định chuỗi thời gian (các giá trị của chỉ tiêu sắp xếp theo trình tự thời gian) cần theo dõi Điều này có ý nghĩa quan trọng vì có chuỗi thời gian chúng
ta mới có căn cứ để ngoại suy
- Giải thích các diễn biến trong quá khứ, nói cách khác, tìm hiểu nguyên nhân của các hệ quả đã quan sát được Rõ ràng là sự giải thích nguyên nhân không đúng sẽ dẫn đến những ngoại suy vô lý Thí dụ như có rõ những nguyên nhân đã dẫn đến tốc độ tăng trưởng cao của nền kinh tế Việt Nam trong mấy năm vừa qua, chúng ta mới có thể có được những dự báo đáng tin cậy về tốc độ này trong những năm sắp tới, chưa nói đến điều chỉnh cần thiết do sự thay đổi những nhân tố bên ngoài
Trang 6- Đề xuất các giả thiết về sự phát triển của các biến số trong tương lai; nói riêng, về khả năng xuất hiện những điểm uốn hay gián đoạn so với xu hướng “tự nhiên” và, nếu có thể, xác suất hiện các điểm uốn hay gián đoạn đó
Như vậy cho đến đây chúng ta đã có được:
- Các biến số then chốt: C1, C2…
- Một nhóm các giả thiết về biến số then chốt: H1, H2, H3…
Lôgíc tự nhiên là xem xét các tổ hợp của các giả thiết đó Mặc dù có một số
tổ hợp có thể bị loại ngay do sự không hợp lý bên trong của nó, số tổ hợp còn lại vẫn rất lớn và ta cần phải làm thế nào để giữ lại chỉ những tổ hợp có ý nghĩa đáng kể, hay nói cách khác, xây dựng các tương lai khả dĩ của hệ thống được nghiên cứu
2.4 Xây dựng các tương lai khả dĩ
Có hai phương pháp đáng chú ý nhất có thể sử dụng để đi đến các tương lai khả dĩ: mô hình và kịch bản
a) Mô hình
Mô hình là một biểu diễn hình thức của những yếu tố cơ bản của một vấn
đề theo ngôn ngữ vật lý hay tóan học Để có mô hình của vấn đề, trước hết ta cần nhận biết về vấn đề và biểu thị nó bằng lời nói, sau đó chuyển lời nói sang ngôn ngữ vật lý hay toán học để nghiên cứu những biểu diễn hình thức
Đối với vấn đề cần dự báo, từ các biến số đã được xác định và các giả thiết
đã được đề xuất, chúng ta có thể xây dựng một mô hình cho vấn đề này, cụ thể
là một hệ thống phương trình biểu diễn sự tương tác của các biến số thuộc một phân hệ đã được tách riêng Giải hệ thống phương trình, chúng ta sẽ có được một số hiểu biết về tương lai
Để phương pháp mô hình có thể áp dụng được, có một loạt yêu cầu cần phải được thực hiện, quá khứ cần phải được biểu diễn một cách đúng đắn, không được có “hiệu ứng ngưỡng” đối với phân hệ (ra ngoài ngưỡng, các “quy tắc trò chơi” bên trong của hệ thống không còn áp dụng được nữa), không phải xét lại
sự hoạt động của phân hệ do có gián đoạn trong các biến số (xuất hiện một biến
số không có trong quá khứ,…),v.v…
b) Kịch bản
Phương pháp này có thể là thô thiển so với phương pháp mô hình Song, như Hugues de Jouvenel đã nói, “Thà là gần đúng thô thiển mà đúng đắn chứ không nên tinh vi mà sai lầm”
Một kịch bản phải bao gồm ba yếu tố sau đây:
Trang 7- Căn cứ: là sự biểu hiện (trung thành) thực tế hiện tại và động thái của hệ;
- Các lộ trình (cheminements): được xây dựng để theo đó hệ sẽ phát triển (theo thời gian) đồng thời biết rằng trong quá trình tiến triển của hệ, sẽ có những câu hỏi được đặt ra mà để trả lời, ta có thể xem xét một số giả thiết từ đó dựng nên một cái cây các tương lai khả dĩ
- Những hình ảnh cuối cùng: thu được ở các thời kỳ khác nhau và đặc biệt
là triển vọng dự báo từ các lộ trình đưa ra ở trên
Khi đưa ra các hình ảnh cuối cùng, ta không quên rằng cái quan trọng hơn chính là các lộ trình đã dẫn đến các hình ảnh đó và điều cơ bản là chỉ rõ độ lớn của các hiện tượng và thời điểm xuất hiện của chúng
Áp dụng phương pháp kịch bản, ta lưu ý tránh bị rơi vào tình trạng có quá nhiều lộ trình và nên cố gắng xác định chỉ vài xu hướng lớn và minh họa các xu hướng này bằng các hệ quả của nó
Các kịch bản mô tả ở trên là các kịch bản thăm dò Mục đích của chúng là
tìm kiếm, phát hiện những tương lai khả dĩ (xem hình)
Một loại khác là các kịch bản định mức hay kịch bản chiến lược Chúng
được xây dựng không theo chiều tự hiện tại đến tương lai như trong trường hợp các kịch bản thăm dò mà ngược lại – mục tiêu đã đặt ra trong tương lai đi ngược thời gian về hiện tại và chỉ ra những hành động cần được tiến hành để đặt được mục tiêu đó (xem hình)
Trang 8II MỘT SỐ PHƯƠNG PHÁP GIÁO DỤC
1 Phương pháp mô hình hóa
Có nhiều phương pháp dựa báo, song như đã nói ở phần trên người ta có thể phân ra làm hai nhóm, hình thức hóa được dưới dạng mô hình và phi hình thức hóa Mô hình là một hệ thống lí thuyết của các mối quan hệ tương hỗ, hệ thống này được thiết kế nhằm biễu diễn các hiện tượng của thế giới thực tại và
sự liên kết giữa các hiện tượng này Mô hình đóng vai trò là một công cụ giải thích các sự kiện quá khứ và hiện tại và dự báo cho tương lai, mô hình còn được
sử dụng trong một số trường hợp để kiểm soát các biến cố trong tương lai Ở dạng đơn giản nhất mô hình bao gồm một phương trình diễn tả mối quan hệ giữa một biến phụ thuộc vào một hay nhiều biến độc lập Thực ra thế giới thực tại rất phức tạp nên thông qua mô hình người ta chỉ đưa ra những biến số quan trọng và những mối quan hệ quan trọng nhất giữa chúng Tùy theo đối tượng nghiên cứu
mà người ta phân loại và gọi tên các loại mô hình, trong phần tiếp theo đây chỉ giới hạn phạm vi nghiên cứu là các mô hình kinh tế
Với sự ra đời và phát triển của khoa học giáo dục, các mô hình giáo dục cũng lần lượt được nghiên cứu Xu thế chung của các nước là phát triển các mô hình mô tả càng sát với nền giáo dục càng tốt, độ lớn và mức độ phức tạp của
mô hình không còn là các giới hạn quan trọng nữa bởi lẽ với các phần mềm máy tính hiện nay cho phép giải quyết nhiều bài tóan lớn mà trước đây một, hai thập
kỷ không có một phương tiện nào có thể giúp tìm ra lời giải
Dự báo bằng phương pháp mô hình là một cách tiếp cận những thông tin cho tương lai bằng công cụ mô hình hóa với trình tự:
- Hình thức hóa quá trình kinh tế cần nghiên cứu dưới hình thức mô hình,
- Sử dụng mô hình để ngoại suy, để mô phỏng và thiết kế các phương án phát triển
- Từ các kết quả có được ở bước thứ hai, kết hợp với các phân tích bằng các phương pháp khác, đưa ra các phương án dự báo
Hai kỹ thuật thường dùng trong dự báo là ngoại suy và mô phỏng Ngoại suy được hiểu là kéo dài những quy luật giáo dục đã hình thành trong quá khứ
và hiện tại cho tương lai, ngoại suy bằng phương pháp mô hình được hiểu là kéo dài những quy luật giáo dục đã được mô hình hóa theo trục thời gian Kỹ thuật ngoại suy thường dùng cho các quá trình ổn định phát triển tương đối ổn định và
vì vậy thích hợp với dự báo ngắn hạn Kinh nghiệm ứng dụng cho thấy người thường ngoài suy cho một khoảng thời gian bằng một phần ba chiều dài quá khứ
Trang 9Mô phỏng là quá trình kiểm tra hành vi của một hệ thống và phân tích các vấn đề có liên quan trên cơ sở một mô hình mô tả hệ thống này Nói một cách khác mô phỏng chính là diễn trước những động thái có thể xảy ra trong tương lai của hệ thống trên máy tính điện tử theo các kịch bản khác nhau Người ta thường sử dụng mô phỏng như một công cụ để nghiên cứu chính sách, các kết quả mô phỏng cho biết tác động của chính sách đối với nền giáo dục Thông qua phân tích sự tác động này, người ta sẽ lựa chọn các chính sách phù hợp với sự phát triển trong tương lai và các phương án tương ứng sẽ được xem xét như là các dự báo Trong giáo dục người ta còn chia ra mô phỏng ngẫu nhiên và mô phỏng nhiều phương án Mô phỏng ngẫu nhiên thường để xem xét sự ổn định của mô hình, của các chính sách, còn mô phỏng nhiều phương án tạo điều kiện
so sánh lựa chọn
1.1 Nội dung của phương pháp mô hình hóa
Nói một cách tổng quát có thể chia nội dung của phương pháp mô hình hóa
ra làm 5 bước:
- Bước 1 – nhằm phân tích đối tượng nghiên cứu, trong đó bao hàm lĩnh vực cần phân tích, dự báo, các chỉ tiêu quan tâm, khoảng thời gian cần nghiên cứu… Những thông tin nào có sẵn, những thông tin nào cần xử
lý, chế biến…
- Bước 2 – lựa chọn mô hình: Để có thể lựa chọn được mô hình, người ta thường phải chấp nhận một số giả thiết về hệ thống kinh tế (đối tượng nghiên cứu),bao gồm cơ chế giáo dục (là kế hoạch tập trung, chuyển đổi hay kinh tế thị trường…), lý thuyết giáo dục nào phù hợp với hệ thống này, là nền giáo dục đóng hay mở… Kết hợp với bước 1, người ta có được một nhóm các mô hình để lựa chọn, sau khi lựa chọn được mô hình thích hợp (đáp ứng được mục tiêu nghiên cứu và điều kiện về thông tin) người ta đi sâu hơn vào cấu trúc của mô hình và dạng của các phương trình mô tả mối quan hệ giữa các thành phần trong hệ thống nghiên cứu Nhìn chung, lựa chọn mô hìnhlà một lĩnh vực khó bởi lẽ không có mô hình “thực” để so sánh Chính vì vậy, trong thực tế người
ta thường sử dụng các mô hình đã được nghiên cứu ở các nước, trước tiên là làm theo, sau đó là cải biên và khi đủ sức thì tự phát triển
- Bước 3 – xây dựng mô hình: Với cấu trúc đã lựa chọn được ở bước 2, trong bước này các tham số của mô hình sẽ được lượng hóa Căn cứ trên điều kiện thông tin người ta sẽ phân chia các biến số của mô hình ra làm
2 loại: biến ngoại là biến có giá trị cho trước hoặc được xác định ngoài
mô hình, còn biến nội là biến sẽ được tính toán qua mô hình Tùy theo
Trang 10các loại mô hình người ta sử dụng các phần mềm mày tính khác nhau để ước lượng các tham số của mô hình
- Bước 4 – kiểm định mức độ chính xác của mô hình: Trong thực tế người
ta thường lấy tiêu chuẩn phù hợp để xem xét độ chính xác của mô hình Thông qua việc mô phỏng lại quá khứ, người ta có thể so sánh các chỉ tiêu thu được qua tính tóan bằng mô hình và số thống kê thực hiện, nếu sai số nằm trong giới hạn cho phép, mô hình được coi là có thể ứng dụng được
- Bước 5 – vận dụng mô hình: Tùy theo nhu cầu và tính chất mà mô hình được sử dụng để dự báo ngoại suy, để mô phỏng các chính sách, hoặc
để thiết kế các quỹ đạo phát triển dài hạn
1.2 Ưu thế của phương pháp mô hình
So sánh với các phương pháp dự báo khác, phương pháp mô hình hóa đảm bảo cho các kết quả dự báo thu được tính hệ thống và hợp lý Thông qua việc
mô phỏng, người ta vừa có thể kiểm định được tính sát thực của mô hình vừa nghiên cứu được nhiều khía cạnh khác nhau của các chỉ tiêu kinh tế Phương pháp mô hình hóa cho phép dễ dàng cập nhật các dự báo khi có thông tin mới
Do cơ sơ lý luận để xây dựng các mô hình là các lý thuyết giáo dục, phương pháp mô hình còn ch phép liên kết các kết quả định tính và định lượng để có được những kết quả có chất lượng cao hơn
1.3 Tổng quan về các mô hình dự án giáo dục
Các mô hình dự báo dài hạn thường được thiết kế theo hướng nghiên cứu chính sách vì tạo ra một tầm nhìn cho tương lai Người ta thường phân biệt hai loại mô hình dài hạn: Mô hình tăng trưởng (dạng kinh tế lượng) và mô hình kế hoạch hóa (dạng tối ưu)
- Mô hình tăng trưởng dạng kinh tế lượng thường được sử dụng để xem
xét các quỹ đạo phát triển khác nhau của nền kinh tế trong tầm dài hạn
và thông qua đó nhận biết được con đường nào đạt được sự tăng trưởng tối đa hoặc thích hợp Trong các mô hình này, tăng trưởng dân số, tiến
bộ công nghệ, thói quen tiết kiệm, của dân cư… là những yếu tố quan trọng xác định quỹ đạo tăng trưởng thích hợp Những chính sách để huy động nguồn vốn và công nghệ nước ngoài, để đầu tư phát triển nguồn nhân lực cũng đóng vai tròn to lớn trong việc xác định con đường phát triển dài hạn
- Mô hình tăng trưởng dạng tối ưu về cơ bản khác mô hình tăng trưởng
dạng kinh tế lượng, mô hình kinh tế loại này dùng để dự báo có điều
Trang 11kiện, cho phép chỉ ra những qũy đạo phát triển khác nhau dưới những điều kiện và các biện pháp chính sách nhất định Mục tiêu của mô hình
là tối ưu hóa phúc lợi xã hội Theo ý nghĩa của mô hình, các dự báo thu được sẽ là tối ưu nhưng phải lưu ý rằng quỹ đạo mà trong thực tế con người chọn sẽ khác với những gì mà mô hình đã tính ra Những phương
án dự báo mang tính kiến thiết này không phải là đoán nhận cái gì sẽ xảy ra mà cung cấp thông tin để có những chính sách nhằm lựa chọn cái
có thể xảy ra
b Các mô hình dự báo trung hạn:
Các mô hình trung hạn cụ thể hóa hơn các chính sách và định hướng, thông thường cho khoảng 5 năm Những mô hình này độc lập tương đối với những yếu
tố mang tính ngắn hạn như thuế, dự trữ ngoại tệ, nhưng lại chịu ảnh hưởng mức
độ của các yếu tố công nghệ và cơ sở hạ tầng Sự chuyển dịch cơ cấu ngành cũng được xem xét trong mô hình Thông thường ở các nước tiên tiến, sau loại
mô hình sau đây được sử dụng cho dự báo trung hạn
- Mô hình giáo dục lượng (tăng trưởng giáo dục về lượng)
Là phương pháp dựa trên lý thuyết về giáo dục lượng, môn khoa học lượng hóa các quá trình giáo dục bằng phương pháp thống kê Có thể phân chia giáo dục lượng ra làm hai khối, khối các phương pháp giáo dục lượng trên thực chất
là các phương pháp toán thống kê ứng dụng trong giáo dục và khối mô hình giáo dục lượng diễn tả về mặt định lượng các học thuyết kinh tế Ý tưởng chính của phương pháp dùng mô hình giáo dục và khối mô hình giáo dục lượng là mô tả các mối quan hệ giữa các đại lượng giáo dục bằng một hệ các phương trình đồng thời Với các dãy số liệu quá khứ, các tham số của các phương trình này sẽ được ước lượng bằng các phương pháp thống kê Sử dụng mô hình đã ước lượng này người ta tiến hành dự báo cho tương lai bằng các kỹ thuật ngoại suy hoặc mô phỏng Mô hình và các phương pháp giáo dục lượng đã được nghiên cứu từ lâu
và tự thân phát triển thành mộ bộ môn khoa học Với sự phát triển của công nghệ máy tính đã cho ra đời một loạt các phần mềm chuyên dụng cho phép ước lượng các tham số và giải các mô hình giáo dục lượng nhanh chóng
- Mô hình I/O
Ý tưởng chính của mô hình I/O là dựa trên mối quan hệ liên ngành trong bảng Input/Output diễn tả mối quan hệ của quá trình giáo dục giữa các yếu tố đầu vào của quá trình giáo dục, các chi phí trung gian và đầu ra của quá trình giáo dục Với mô hình I/O người ta có thể tính được sản phẩm cuối cùng (đầu ra) khi biết được các sản phẩm đầu vào của quá trình giáo dục và ngược lại
Trang 12Cũng như ở phần trên, các phần mềm máy tính cho phép giải quyết các mô hình I/O với kích thước lớn
- Mô hình tối ưu hóa
Mô hình tối ưu hóa là một lĩnh vực khá phát triển của toán học ứng dụng, đặc biệt trong lĩnh vực kinh tế Thông thường các mô hình này được sử dụng tính toán trong lĩnh vực quy hoạch như bố trí các nguồn lực giáo dục nhằm đạt được tối ưu theo một tiêu chuẩn nào đó Đối với lĩnh vực dự báo, mô hình tối ưu được sử dụng để xây dựng các dự báo mang tính chất kiến thiết Các phần mềm ứng dụng cho phép giải quyết các bài tóan tối ưu phức tạp (dạng phi tuyến) cỡ lớn
- Mô hình chuỗi thời gian
Mô hình chuỗi thời gian còn gọi là mô hình Box-Jenkins (tên hai tác giả đã viết một cuốn sách nổi tiếng về loại mô hình này) Giả thiết chính của mô hình chuỗi thời gian là tồn tại các quá trình giáo dục mà khi ta có một dãy quan sát của qúa trình này trong quá khứ, người ta có thể tìm ra quy luật định lượng giá trị hiện tại thông qua số liệu quá khứ Các phương pháp thống kê cho phép lượng hóa các quy luật này Lý thuyết về chuỗi thời gian thực ra có xuất xứ từ các quá trình kỹ thuật, sau đó mới được ứng dụng cho các quá trình kinh tế Bản thân cấu trúc của mô hình chuỗi thời gian cũng đã mang tính chất dự báo, nghĩa
là hiện tại được lượng hóa qua quá khứ, chính vì vậy một trong những ứng dụng của loại mô hình này là để dự báo, đặc biệt cho ngắn hạn
- Mô hình phân tích đa nhân tố
Mô hình phân tích đa nhân tố là một lĩnh vực khoa học riêng biệt trong hệ thống ứng dụng Nguồn gốc sâu xa của loại mô hình này bắt nguồn từ thống kê sinh học hay sinh trắc (biometrics) Mục tiêu chính của loại mô hình này là phân tích mối tương quan giữa các chỉ tiêu (nhân tố) với nhau và lượng hóa các mối quan hệ này Mô hình cho phép xem xét các chỉ tiêu giáo dục quan tâm, phân tích tương quan giữa chúng để khẳng định những mối quan hệ chính, lượng hóa
và sử dụng mối quan hệ này để dự báo ngắn hạn
- Mô hình cân bằng tổng quát
Lý thuyết về cân bằng tổng quát cho rằng trong một nền kinh tế có cạnh tranh hoàn hảo thì cung và cầu của thị trường sẽ tự điều chỉnh để đạt tới trạng thái cân bằng tổng quát Mô hình cân bằng tổng quát lúc đầu chủ yếu tập trung
về mặt định tính Sự phát triển kỹ thuật tính toán cho phép trong thời gian gần đây có thể lượng hóa mô hình này trên máy tính điện tử Mô hình loại này có tên
là cân bằng tổng quát tính được (bằng máy tính điện tử) thường được viết tắt
Trang 13bằng ba chữ đầu CGE của thuật ngữ tiếng Anh Computable General Equylibrium Mô hình loại này thường sử dụng cho các nền kinh tế đang phát triển Loại mô hình tương tự dùng cho các nước phát triển được gọi là Cân bằng tổng quát ứng dụng, viết tắt bằng ba chữ đầu AGE của thuật ngữ tiếng Anh Applied General Equylibrium
2 Phương pháp chuyên gia
Bao gồm các phương pháp xử lý và đưa ra dự báo dựa trên ý kiến các chuyên gia là chính Đối với phương pháp này, mặt lợi thế là có thể sử dụng trong điều kiện thiếu thông tin, song về mặt định lượng bị hạn chế hơn Một khâu quan trọng trong phương pháp này là tìm được chuyên gia, theo nghĩa là những nhà giáo dục, khoa học, kỹ thuật có am hiểu và kinh nghiệm trong lĩnh vực giáo dục Quá trình tích lũy kinh nghiệm của các chuyên gia đã giúp họ tổng kết và phát hiện những quy luật của hiện tại và quá khứ, và có thể mường tượng, tiên đoán về tương lai Phương pháp chuyên gia thường phát huy tác dụng khi được kết hợp với các phương pháp định lượng khác như phương pháp mô hình hóa
3 Các phương pháp kết hợp
Tiệm cận lặp (là một phương pháp có tên tiếng Anh là Succesive Approximation), đây là một phương pháp điển hình được ứng dụng trong thời gian gần đây kết hợp được những thế mạnh của phương pháp chuyên gia và phương pháp mô hình hóa Sự kết hợp giữa các chuyên gia giáo dục làm việc trong các cơ quan nhà nước, trong các viện nghiên cứu và trong các doanh nghiệp với các nhà mô hình hóa là sự quyết định thành công của phương pháp này Đầu tiên các nhà mô hình phải hình thành một mô hình tả đối tượng cần dự báo Các chuyên gia giáo dục trong từng lĩnh vực sẽ phát biểu các chỉ tiêu (giá trị các biến) trong mô hình dựa theo kinh nghiệm hay các dự báo đã có, đây coi như kịch bản khởi đầu Các nhà mô hình hóa sẽ cho các giá trị này vào mô hình
và tính toán ra một bộ giá trị mới, coi như là kịch bản tiếp theo Nếu kịch bản mới này hợp lý và hội tụ, quá trình sẽ dừng, nếu chưa đạt quá trình trên sẽ được lặp lại Trong từng bước lặp các chuyên gia có thể đóng góp ý kiến hiệu chỉnh
và tự bổ sung lại đề nghị của mình trên cơ sở kết quả tính tóan và tham khảo ý kiến của các chuyên gia khác Bằng cách tiếp cận này các chuyên gia sẽ tiệm cận được giá trị dự báo sau các bước lặp, đây là một phương pháp ít nhiều mang tính chất Ơristic và tên của phương pháp nêu rõ phương thức tiến hành
III Dự báo trong điều kiện thông tin đầy đủ
1 Xử lý vấn đề thiếu thông tin
Trang 14Ở các nước đang phát triển đều tồn tại một tình trạng chung là thiếu thông tin cần thiết cho phân tích và dự báo kinh tế Hiện tượng này lại càng trầm trọng hởn các nước có nền kinh tế chuyển đổi như Việt Nam Để khắc phục tình trạng này, người ta có 3 cách cơ bản sau đây:
- Sản xuất ra những dãy số liệu hợp lý: Cách làm này trên thực tế đã được
Tổng cục Thống kê tiến hành trong thời gian vừa qua Đến trước năm 1993, Việt Nam chỉ có số liệu thống kê theo hệ MPS Bắt đầu từ năm 1993 hệ SNA mới chính thức được sử dụng ở các cơ quan nhà nước Để tạo điều kiện cho công tác nghiên cứu kinh tế, Tổng cục Thống kê đã tính toán và công bố chính thức các
số liệu kinh tế theo SNA cho thời kỳ từ năm 1996 (năm bắt đầu có chủ trương đổi mới) Các số liệu cho những năm này được xem xét từ nhiều giác độ khác nhau, từ việc so sánh với các chỉ tiêu tương ứng của hệ MPS, so sánh quốc tế, tham khảo ý kiến chuyên gia
- So sánh số liệu quốc tế: Đây cũng là một cách mà các chuyên gia quốc tế
khi xử lý số liệu của các nước đang phát triển hay dùng với các hai mục tiêu: hiệu chỉnh lại những số liệu đã có nhưng kém chính xác hoặc không phù hợp và xây dựng những số liệu mới Tùy theo ý nghĩa mà người ta có thể lấy một nước hay trung bình nhiều nước làm khuôn mẫu so sánh Cũng cần lưu ý rằng, phương pháp so sánh quốc tế không chỉ để phân tích số liệu quá khứ mà còn để xem xét động thái và xu thế trong tương lai Có thể đơn cử một vài khía cạnh so sánh quốc tế đã được sử dụng
+ Một số quan hệ tỷ lệ vĩ mô: Đầu tư/GDP, tích lũy/GDP, hàm lượng vốn
và lao động trong một đơn vị giá trị gia tăng, hệ số ICOR, TFP, cơ cấu của các ngành, năng suất lao động…
+ Hỗ trợ cho việc xây dựng mô hình: Trong trường hợp không đủ số liệu
để xây dựng mô hình, người ta có thể sử dụng số liệu trung bình của các nước đang phát triển thậm chí sử dụng các tham số đã dùng ở các nước đang phát triển cho mô hình của Việt Nam (ví dụ như trong mô hình tiêu chuẩn tối thiểu cải biên của WB, viết tắt tiếng Anh là RMSM, hay
mô hình CGE của HIID xây dựng để nghiên cứu chính sách môi trường của Việt Nam)
+ So sánh về động thái, hành vi và xu thế của các quá trình kinh tế, so sánh sự tương tác giữa các yếu tố kinh tế…
- Kỹ thuật Proxy: là một công cụ hay được sử dụng nhằm khắc phục hiện
việc thiếu các chuỗi thời gian để phân tích thông tin ý tưởng chính của kỹ thuật này là dùng một dãy số liệu tương tự thay thế cho dãy số liệu không có Dãy số
Trang 15liệu được lựa chọn thay thế này phải không làm sai lệch ý nghĩa của mô hình và
có động thái tương tự như dãy số liệu bị khiếm khuyết
Việc kết hợp các nghiên cứu định tính và định lượng là rất quan trọng nên trong thực tế người ta thường sử dụng nhiều phương pháp khác nhau, nhiều cách tiếp cận khác nhau để dự báo Kết hợp phương pháp mô hình hóa với phương pháp chuyên gia sẽ tạo điều kiện nâng cao chất lượng của dự báo
IV PHƯƠNG PHÁP PHÂN TÍCH CẤU TRÚC
1 Mục tiêu của phương pháp
Như đã nói trong bài “Phương pháp luận”, trong bước 2 của phương pháp luận chung về dự báo, sau khi đã cố gắng xác định thật rõ ràng và chính xác vấn
đề cần dự báo, công việc tiếp theo cần phải làm là tìm ra tất cả các biến số có
ảnh hưởng đến vấn đề được nghiên cứu hay chịu ảnh hưởng của vấn đề được
nghiên cứu, xác định các loại quan hệ giữa các biến số đó, và cuối cùng phát hiện ra những biến số có tính chất cơ bản (các biến số then chốt) Phân tích cấu trúc là phương pháp cho phép giải quyết vấn đề này một cách có hệ thống
Một cách tổng quát, các mục tiêu của phương pháp phân tích cấu trúc là làm rõ cấu trúc của các quan hệ giữa các biến số (lượng hóa được cũng như không lượng hóa được) đặc trưng cho hệ thống được nghiên cứu Hệ thống đó, lấy thí dụ, có thể là một xí nghiệp và môi trường hoạt động của nó Nói một cách
cụ thể, phương pháp phân tích cấu trúc tìm cách mô tả hệ thống được nghiên cứu bằng một ma trận trong đó nêu rõ các quan hệ giữa các phần tử cấu thành của hệ, xem xét các quan hệ đó và phát hiện ra các biến số then chốt
Ngoài ứng dụng về dự báo, phương pháp này cón có một số ứng dụng khác nữa, thí dụ như tạo cơ sở để suy nghĩ về hệ thống và đi đến xây dựng mô hình với mức độ tinh vi cao hơn
Trang 162 Qui trình thực hiện phương pháp
Trong dự báo, phương pháp phân tích cấu trúc được tiến hành theo 3 bước sau đây:
Có thể tổ chức những cuộc họp để suy nghĩ một cách tập thể về các biến số cần tìm kiếm Tất cả các quan điểm khác nhau (chính trị, kinh tế, công nghệ, xã hội…) về vấn đề này cần được xem xét
Danh mục các biến số được tập hợp tạm thời lúc đầu sau đó cần được rà soát lại, một số có thể được kết hợp làm một, một số có thể bỏ đi, để đi đến một danh mục được sắp xếp tương đối trật tự
Công việc tiếp theo là tập hợp các biến số thu được theo từng nhóm, thí dụ như phân biệt nhóm các biến số trong (đặc trưng cho phần của hệ là đối tượng nghiên cứu) và nhóm các biến số ngòai (chỉ môi trường của phần đó của hệ) Cuối cùng là nói rõ về các biến số mà một khi nêu ra có thể đã được hiểu không thống nhất Có làm rõ như vậy, chúng ta mới có thể dễ dàng nói đến các quan hệ giữa các biến số
2.2 XÁC ĐỊNH QUAN HỆ GIỮA CÁC BIẾN SỐ MÔ TẢ TRONG MA TRẬN PHÂN TÍCH CẤU TRÚC
Theo quan điểm hệ thống về thế giới thì không có biến số nào có thể tồn tại
mà không trong các quan hệ với một biến số khác Chính là từ sự hiểu biết (lúc đầu có thể là trực quan) về một số quan hệ nào đó mà chúng ta đã tìm ra một số biến số trong giai đaọn lập danh mục biến số
Trang 17Nội dung của phân tích cấu trúc là chỉ ra các quan hệ giữa các biến số trong một bảng có hai lối vào được gọi là ma trận phân tích cấu trúc (xem hình trang sau)
Nếu biến số i (thuộc hàng) có tác động trực tiếp đến biến số j(thuộc cột) thì phần tử aij tương ứng (giao điểm giữa hàng i và cột j) sẽ được cho bằng 1; ngược lại (không có tác động trực tiếp) – cho bằng 0
Để đi đến kết luận về sự tồn tại một quan hệ giữa hai biến số, nhóm dự báo cần trả lời một cách hệ thống 3 câu hỏi sau đây:
a) Có phải là có tác động của biến số i đến biến số j hay là từ j đến i? (xem hình sơ, sơ đồ a)
b) Có phải là có tác động của i đến j hay là có một biến số thứ ba m tác động đến i và j? (sơ đồ b)
c) Quan hệ giữa i và j là trực tiếp hay là qua trung gian một biến số n? (sơ
đồ c)
Trang 18Việc trả lời các câu hỏi một cách hệ thống như vậy sẽ giúp ta trán mắc sai lầm khi điền ma trận
Một số biến số tuy hiện có quan hệ yếu với nhau nhưng trong tương lai sẽ
có thể trở thành có quan hệ đáng kể Do vậy, ta cũng cần chú ý đến cả những quan hệ tiềm năng mà trong tương lai có thể sẽ xuất hiện
Ở trên ta mới chỉ đặt vấn đề xét sự tồn tại hay không tồn tại của các quan
hệ giữa các biến số và ghi lại trong ma trận (bằng số 1) Song ta cũng có thể phân biệt các mức độ tác động khác nhau của các biến số (cường độ của các quan hệ trực tiếp), thí dụ như phân biệt các tác động rất mạnh (RM), mạnh (M), vừa (V), yếu (Y), rất yếu (RY) và tiềm năng (P)
Để điền ma trận, ta có thể tiến hành theo 2 cách:
a) Theo dòng: Xét ảnh hưởng của từng biến số đến tất cả các biến số khác; b) Theo cột: Xét xem đối với mỗi biến số, có những biến số nào ảnh hưởng đến nó
Dùng cả hai cách và so sánh các kết quả thu được theo mỗi cách, ta sẽ có thể phát hiện ra những sai lầm mắc phải (từ những chỗ không giống nhau) Tuy nhiên, vì cách làm này tốn nhiều công sức, nó ít được các nhà nghiên cứu sử dụng (các biến số thường là hàng chục, số câu hỏi đặt ra do đó là hàng nghìn!) Với thí dụ về việc làm và thất nghiệp nói trên, ta có ma trận phân tích cấu trúc sau đây mà vì lý do đơn giản chúng tôi chỉ nêu lại một phần, cụ thể là ma trận con trận của các biến số trong (các số ở đây là số thứ tự đã ghi cho các biến số):