1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo môn học thống kê sinh thái học

17 444 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,01 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Please explain the influence of precipitation, altitude, age and geology parameters on the presence-absence of Faramea occidentalis species.. Analysis an influence of age category on the

Trang 1

HANOI UNIVERSITY OF SCIENCE

Final exam scientific report

Course V370: Research Methods and Statistical Modelings

Vu Tuan Tai- K55TT KHMT- 10000792

" Analysis of presence or absence of species.

The data to be analyzed is the data on the abundance of Faramea occidentalis (in attached text file) Please explain the influence of precipitation, altitude, age and geology parameters on the presence-absence of Faramea occidentalis species The calculation and the numerical results are required "

Trang 2

1 Analysis an influence of age category on the presence-absence of Faramea occidentalis 2

1.1 Analysis by using quasi-binomial GLM 2

1.2 Graphical results 3

1.3 Discussion 4

2 Analysis an influence of precipitation on the presence-absence of Faramea occidentalis 4

2.2 Analysis by using quasi-binomial GLM 4

2.2 Graphical results 6

2.3 Discussion 7

3 Analysis an influence of elevation (altitude) on the presence-absence of Faramea occidentalis 7

3.1 Analysis by using quasi-binomial GLM 7

3.2 Graphical results 10

3.3 Discussion 11

4 Analysis an influence of geology on the presence-absence of Faramea occidentalis 11

4.1 Analysis by using quasi-binomial GLM 11

4.2 Graphical results 13

4.3 Discussion 13

5 Analysis the influence of several explanatory variables on the presence-absence of Faramea occidentalis by using binomial GLM 14

5.1 Results 14

5.2 Discussion 15

Conclusion 15

Trang 3

1 Analysis an influence of age category on the presence-absence of Faramea occidentalis

1.1 Analysis by using quasi-binomial GLM

> Presabs.model3 <- glm(formula = Faramea.occidentalis>0 ~ Age.cat, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> summary(Presabs.model3)

Call:

glm(formula = Faramea.occidentalis > 0 ~ Age.cat, family = quasibinomial(link = logit),

data = faramea, na.action = na.exclude)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4350 -1.0008 -0.9005 1.0979 1.4823

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 0.5878 0.5783 1.016 0.316

Age.cat[T.c2] -0.7701 0.8536 -0.902 0.372

Age.cat[T.c3] -1.2809 0.7767 -1.649 0.107

(Dispersion parameter for quasibinomial family taken to be 1.075)

Null deviance: 59.401 on 42 degrees of freedom

Residual deviance: 56.322 on 40 degrees of freedom

(2 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 4

> anova(Presabs.model3,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit

Response: Faramea.occidentalis > 0

Terms added sequentially (first to last)

Df Deviance Resid Df Resid Dev F Pr(>F)

NULL 42 59.401

Age.cat 2 3.0793 40 56.322 1.4322 0.2508

> predict(Presabs.model3, type="response", se.fit=T)

$fit

B0 B49 p1 p2 p3 p4 p5 p6

0.3333333 0.3333333 0.4545455 0.3333333 0.6428571 0.6428571 0.4545455 0.4545455

p7 p8 p9 p10 p11 p12 p13 p14

0.6428571 0.3333333 0.3333333 0.3333333 0.3333333 0.4545455 0.4545455 0.3333333

p15 p16 p17 p18 p19 p20 p21 p22

0.3333333 0.3333333 0.3333333 0.4545455 0.6428571 0.6428571 0.6428571 0.6428571

p23 p24 p25 p26 p27 p28 p29 p30

0.4545455 0.4545455 0.4545455 0.4545455 0.6428571 0.6428571 0.6428571 0.6428571

p31 p32 p33 p34 p35 p36 p37 p38

0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.3333333 0.6428571

p39 p40 p41 C1 S0

0.6428571 NA NA 0.6428571 0.4545455

$se.fit

B0 B49 p1 p2 p3 p4 p5 p6

0.1152024 0.1152024 0.1556596 0.1152024 0.1327757 0.1327757 0.1556596 0.1556596

p7 p8 p9 p10 p11 p12 p13 p14

0.1327757 0.1152024 0.1152024 0.1152024 0.1152024 0.1556596 0.1556596 0.1152024

Trang 4

p15 p16 p17 p18 p19 p20 p21 p22

0.1152024 0.1152024 0.1152024 0.1556596 0.1327757 0.1327757 0.1327757 0.1327757

p23 p24 p25 p26 p27 p28 p29 p30

0.1556596 0.1556596 0.1556596 0.1556596 0.1327757 0.1327757 0.1327757 0.1327757

p31 p32 p33 p34 p35 p36 p37 p38

0.1152024 0.1152024 0.1152024 0.1152024 0.1152024 0.1152024 0.1152024 0.1327757

p39 p40 p41 C1 S0

0.1327757 NA NA 0.1327757 0.1556596

$residual.scale

[1] 1.036822

> null.model <- glm(formula = Faramea.occidentalis>0 ~ 1, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> anova(null.model, Presabs.model3, test="Chi")

> plot(Presabs.model3)

> termplot(Presabs.model3, se=T, partial.resid=T, rug=T, terms="Age.cat")

> library(effects)

> plot(effect("Age.cat", Presabs.model3))

1.2 Graphical results

Trang 5

1.3 Discussion

We can see that the quasi-binomial model estimated the dispersion parameter to be 1.075

Moreover, the ANOVA table provides a large significant level P=0.25 The ANOVA table also provides important information on the deviance that is explained: the model only explains 3.079 per 59.401

of null deviance ( approximately 5.2%- small percentage) So that we can conclude there is no

evidence for an influence of age on the presence-absence of Faramea occidentalis.

2 Analysis an influence of precipitation on the presence-absence of Faramea occidentalis

2.2 Analysis by using quasi-binomial GLM

> Presabs.model4 <- glm(formula = Faramea.occidentalis>0 ~ Precipitation, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> summary(Presabs.model4)

Call:

glm(formula = Faramea.occidentalis > 0 ~ Precipitation, family = quasibinomial(link = logit),

data = faramea, na.action = na.exclude)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7303 -1.0431 -0.3289 1.1157 1.7268

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 6.948352 2.828385 2.457 0.0183 *

Trang 6

Precipitation -0.002721 0.001095 -2.484 0.0172 *

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 0.9878704)

Null deviance: 59.401 on 42 degrees of freedom

Residual deviance: 50.561 on 41 degrees of freedom

(2 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 4

> summary(Presabs.model4)

Call:

glm(formula = Faramea.occidentalis > 0 ~ Precipitation, family = quasibinomial(link = logit), data = faramea, na.action = na.exclude)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7303 -1.0431 -0.3289 1.1157 1.7268

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 6.948352 2.828385 2.457 0.0183 *

Precipitation -0.002721 0.001095 -2.484 0.0172 *

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 0.9878704)

Null deviance: 59.401 on 42 degrees of freedom

Residual deviance: 50.561 on 41 degrees of freedom

(2 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 4

> anova(Presabs.model4,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit

Response: Faramea.occidentalis > 0

Terms added sequentially (first to last)

Df Deviance Resid Df Resid Dev F Pr(>F)

NULL 42 59.401

Precipitation 1 8.8406 41 50.561 8.9492 0.004682 **

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> predict(Presabs.model4, type="response", se.fit=T)

$fit

B0 B49 p1 p2 p3 p4 p5

0.51585260 0.51585260 0.23199505 0.19599449 0.22518137 0.22881035 0.59346000 p6 p7 p8 p9 p10 p11 p12

0.60691110 0.57754510 0.56615226 0.28611341 0.51632834 0.52570000 0.53836922 p13 p14 p15 p16 p17 p18 p19

0.48436383 0.51265767 0.56648644 0.53498590 0.55603305 0.52888801 0.40957580 p20 p21 p22 p23 p24 p25 p26

0.42958718 0.59536260 0.52692120 0.69682041 0.67793630 0.64473891 0.69428486 p27 p28 p29 p30 p31 p32 p33

0.66272350 0.66962240 0.83081979 0.77620128 0.11822036 0.11782378 0.05264970 p34 p35 p36 p37 p38 p39 p40

0.18149948 0.01904871 0.21490787 0.17079990 0.52441063 0.60248775 NA p41 C1 S0

NA 0.85958830 0.21628851

Trang 7

B0 B49 p1 p2 p3 p4 p5

0.08456340 0.08456340 0.10310235 0.10255668 0.10318186 0.10314912 0.09028002

p6 p7 p8 p9 p10 p11 p12

0.09175142 0.08867379 0.08763705 0.10019974 0.08457920 0.08494578 0.08560342

p13 p14 p15 p16 p17 p18 p19

0.08413929 0.08446438 0.08766594 0.08541010 0.08680929 0.08509405 0.08779233

p20 p21 p22 p23 p24 p25 p26

0.08625142 0.09048256 0.08500118 0.10200951 0.10003257 0.09618903 0.10175731

p27 p28 p29 p30 p31 p32 p33

0.09830953 0.09910199 0.10311570 0.10641589 0.09025501 0.09013959 0.05987074

p34 p35 p36 p37 p38 p39 p40

0.10157356 0.03010363 0.10314943 0.10051629 0.08488917 0.09125797 NA

p41 C1 S0

NA 0.09818365 0.10316496

$residual.scale

[1] 0.9939167

> null.model <- glm(formula = Faramea.occidentalis>0 ~ 1, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> anova(null.model, Presabs.model4, test="Chi")

Error in anova.glmlist(c(list(object), dotargs), dispersion = dispersion, :

models were not all fitted to the same size of dataset

> plot(Presabs.model4)

Waiting to confirm page change

Waiting to confirm page change

Waiting to confirm page change

Waiting to confirm page change

> termplot(Presabs.model4, se=T, partial.resid=T, rug=T, terms="Precipitation")

> library(effects)

> plot(effect("Precipitation", Presabs.model4))

>

2.2 Graphical results

Trang 8

2.3 Discussion

From the result above, we can see that the dispersion parameter is estimated to be 0.987, very close

to 1 In addition, we can obtain that there is evidence that precipitation has an effect on the

presence-absence of Faramea, because the significant level calculated for the coefficient is low (P=0.0172) and the model can explain 8.84 per 59.401 of null deviance We can also notice that there is an effect of precipitation from the low significance level of the ANOVA table (P=0.005).

Here we need to calculate the inverse logit function y= exp(x)/(1+exp(x))

Where: x= intercept

So the value of y= exp(6.9483)/(1 + exp(6.9483-0.00272))= 1.0017

3 Analysis an influence of elevation (altitude) on the

presence-absence of Faramea occidentalis

3.1 Analysis by using quasi-binomial GLM

> Presabs.model4 <- glm(formula = Faramea.occidentalis>0 ~ Elevation, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> summary(Presabs.model4)

Trang 9

glm(formula = Faramea.occidentalis > 0 ~ Elevation, family = quasibinomial(link = logit), data = faramea, na.action = na.exclude)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5768 -1.0960 -0.1003 0.9853 1.3298

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 1.059522 0.548718 1.931 0.0604

Elevation -0.007838 0.003608 -2.172 0.0357 *

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 0.9235897)

Null deviance: 59.401 on 42 degrees of freedom

Residual deviance: 49.469 on 41 degrees of freedom

(2 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 5

> summary(Presabs.model4)

Call:

glm(formula = Faramea.occidentalis > 0 ~ Elevation, family = quasibinomial(link = logit), data = faramea, na.action = na.exclude)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5768 -1.0960 -0.1003 0.9853 1.3298

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 1.059522 0.548718 1.931 0.0604

Elevation -0.007838 0.003608 -2.172 0.0357 *

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 0.9235897)

Null deviance: 59.401 on 42 degrees of freedom

Residual deviance: 49.469 on 41 degrees of freedom

(2 observations deleted due to missingness)

AIC: NA

Number of Fisher Scoring iterations: 5

> anova(Presabs.model4,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit

Response: Faramea.occidentalis > 0

Terms added sequentially (first to last)

Df Deviance Resid Df Resid Dev F Pr(>F)

NULL 42 59.401

Elevation 1 9.9317 41 49.469 10.753 0.002127 **

-Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> predict(Presabs.model4, type="response", se.fit=T)

$fit

B0 B49 p1 p2 p3 p4

Trang 10

0.529708571 0.529708571 0.711517145 0.568499634 0.413067396 0.413067396

p5 p6 p7 p8 p9 p10

0.678307798 0.695166342 0.643192603 0.660971608 0.103956639 0.587614191

p11 p12 p13 p14 p15 p16

0.643192603 0.727334914 0.652135099 0.643192603 0.625010199 0.451517474

p17 p18 p19 p20 p21 p22

0.529708571 0.646782001 0.451517474 0.451517474 0.549178826 0.413067396

p23 p24 p25 p26 p27 p28

0.695166342 0.660971608 0.549178826 0.660971608 0.413067396 0.451517474

p29 p30 p31 p32 p33 p34

0.568499634 0.413067396 0.163984396 0.143608856 0.025500776 0.357453005

p35 p36 p37 p38 p39 p40

0.004295295 0.375649093 0.025500776 0.005020600 0.016087593 NA

p41 C1 S0

NA 0.660971608 0.490555259

$se.fit

B0 B49 p1 p2 p3 p4 p5

0.08146756 0.08146756 0.10112096 0.08255982 0.09403845 0.09403845 0.09628896

p6 p7 p8 p9 p10 p11 p12

0.09880798 0.09097973 0.09364622 0.10141856 0.08406130 0.09097973 0.10316293

p13 p14 p15 p16 p17 p18 p19

0.09230903 0.09097973 0.08840591 0.08774458 0.08146756 0.09150956 0.08774458

p20 p21 p22 p23 p24 p25 p26

0.08774458 0.08166658 0.09403845 0.09880798 0.09364622 0.08166658 0.09364622

p27 p28 p29 p30 p31 p32 p33

0.09403845 0.08774458 0.08255982 0.09403845 0.11807371 0.11418257 0.04360614

p34 p35 p36 p37 p38 p39 p40

0.10458585 0.01101142 0.10109007 0.04360614 0.01250399 0.03114841 NA

p41 C1 S0

NA 0.09364622 0.08327455

$residual.scale

[1] 0.9610358

> null.model <- glm(formula = Faramea.occidentalis>0 ~ 1, family = quasibinomial(link=logit) , data = faramea, na.action = na.exclude)

> anova(null.model, Presabs.model4, test="Chi")

> plot(Presabs.model4)

> termplot(Presabs.model4, se=T, partial.resid=T, rug=T, terms="Elevation")

> library(effects)

> plot(effect("Elevation", Presabs.model4))

Ngày đăng: 13/06/2016, 10:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w