Hình chiếu vuông góc của S trên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho 3 HB HA.. Gọi H là trung điểm cạnh AB, tam giác SAB là tam giác đều cạnh 2a, mặt phẳng SAB vuông góc vớ
Trang 1SỞ GD&ĐT HẢI DƯƠNG
TRƯỜNG THPT ĐOÀN THƯỢNG ĐỀ THI THỬ THPT QUỐC GIA LẦN 3 NĂM 2016 Môn thi: TOÁN
Thời gian làm bài: 180 phút
Câu 1 (2,0 điểm) Cho hàm số 1 4 2 3
y x x
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2) Tìm m để phương trình x4 2x2 m 0 có 4 nghiệm phân biệt
2) Gọi E là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các chữ
số 1; 2; 3; 4; 7 Xác định số phần tử của E Chọn ngẫu nhiên một số từ E, tính xác suất để số được chọn là số lẻ
Câu 5 (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):
xúc với mặt cầu (S)
Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a Hình
chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho
3
HB HA Góc giữa SC và mặt phẳng (ABCD) bằng 450 Tính thể tích của khối chóp
S.ABCD và khoảng cách giữa hai đường thẳng AC và SB theo a
Câu 7 (1,0 điểm) Giải hệ phương trình
2 2 2
Câu 8 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A Gọi
K là điểm đối xứng của A qua C Đường thẳng đi qua K vuông góc với BC cắt BC tại E và cắt AB tại N( 1;3) Tìm tọa độ các đỉnh của tam giác ABC biết · AEB450, phương trình
đường thẳng BK là 3 x y 150 và điểm B có hoành độ lớn hơn 3
Câu 9 (1,0 điểm) Cho các số dương , ,a b c thoả mãn 4( a b c ) 9 0 Tìm giá trị lớn
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh: ………Số báo danh: ………
Trang 2SỞ GD&ĐT HẢI DƯƠNG
TRƯỜNG THPT ĐOÀN THƯỢNG ĐỀ THI THỬ THPT QUỐC GIA LẦN 3 ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM
NĂM 2016 Môn thi: TOÁN
1 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 4 2 3
Hàm số đồng biến trên các khoảng ( ; 1);(0;1)
Hàm số nghịch biến trên các khoảng ( 1;0);(1; )
Điểm cực đại ( 1;0) , điểm cực tiểu 0; 3
1 2 Tìm m để phương trình x4 2x2 m 0 có 4 nghiệm phân biệt 1,00
Viết lại phương trình dưới dạng 1 4 2 3 3
, trục hoành và
đường thẳng x0 Tính thể tích khối tròn xoay thu được khi quay D
xung quanh trục Ox
Trang 3Gọi V là thể tích khối tròn xoay thu được thì
0 2
21
Mỗi số tự nhiên gồm ba chữ số phân biệt có thể coi là một chỉnh hợp
chập 3 của 5 pt đã cho Do đó số phần tử của E là A53 60 0,25 Gọi A là biến cố số được chọn là số lẻ n A( )3.A42 36
5 Tìm tọa độ giao điểm của và (S) Viết phương trình mặt phẳng song
song với và trục Ox đồng thời tiếp xúc với mặt cầu (S) 1,00
Trang 4vuông cân tại H 5
AC SB AC SBE A SBE H SBE
3
Gọi M là trung điểm của BE
Tam giác ABE vuông cân tại A AM BE AM, a 2
Trang 5Tìm tọa độ các đỉnh của tam giác ABC biết · AEB450, phương trình
đường thẳng BK là 3 x y 150 và điểm B có hoành độ lớn hơn 3
1,00
45
Trang 6tại điểm 3
;ln 24
Trang 7TRƯỜNG THPT TRIỆU SƠN 3
ĐỀ CHÍNH THỨC
ĐỀ KIỂM TRA KIẾN THỨC THI THPT QUỐC GIA
NĂM HỌC 2015-2015 (Lần 3)
MÔN TOÁN
Thời gian làm bài 180 phút
yx x có đồ thị là ( ).C
a Khảo sát sự biến thiên của hàm số và vẽ đồ thị ( ).C
b Viết phương trình tiếp tuyến của đồ thị ( )C tại điểm có hoành độ bằng -2
Câu 2 (1,0 điểm) Cho phương trình: 2
2sin xsinx m 3 0
a Giải phương trình khi m3
b Tìm m để phương trình đã cho có nghiệm
Câu 4 (1,0 điểm)
a Tính tích phân:
3 2
0 cos
xdx I
Câu 5 (1,0 điểm) Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và B, cạnh
BC là đáy nhỏ Gọi H là trung điểm cạnh AB, tam giác SAB là tam giác đều cạnh 2a, mặt
phẳng (SAB) vuông góc với (ABCD) Cho SC a 5 và khoảng cách từ D đến mặt phẳng
(SHC) là 2a 2
a Chứng minh rằng SH vuông góc với CD
b Tính thể tích của khối chóp S.ABCD
Câu 6 (1,0 điểm) Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng
(P): x y z 4 0 và các điểm A(2; 3;- 4), B(5; 3;- 1)
a Viết phương trình mặt phẳng trung trực của đoạn AB
b Tìm tọa độ điểm M thuộc (P) sao cho tam giác AMB vuông cân tại M
Câu 7 (1,0 điểm) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 1), góc BAC
bằng 600 và nội tiếp trong đường tròn có bán kính R 5 Viết phương trình đường thẳng
BC, biết đường thẳng BC đi qua M(-1; 2) và trực tâm H của tam giác ABC nằm trên
Câu 9 (1,0 điểm) Cho , ,a b c là các số thực thỏa mãn a b c 1 và ab bc ca 0 Tìm giá
Trang 8TRƯỜNG THPT TRIỆU SƠN 3 HƯỚNG DẪN CHẤM
Môn: TOÁN (Lần 3 năm học 2015-2016)
Câu 1
(2,0
điểm)
a (1,0 điểm) Khảo sát… Học sinh làm đúng quy trình, vẽ đúng đồ thị 1,0
2 6
x k x
hệ:
1
50 50 1
Giải hệ bất PT trên ta được k= 25
Vậy tập A có tối đa 25
Trang 9Câu 5
(1,0
điểm)
a Vì tam giác SAB đều nên SHAB
Vì (SAB) (ABCD) nên SH(ABCD) Từ đó suy ra SHCD (đpcm)
0,25 0,25
b Trong tam giác đều ABC cạnh 2a ta có SH=a 3
Kẻ DMHC DM(SHC) suy ra DM=2a 2; kéo dài CH cắt AD tại E
Trong tam giác vuông SHC có HC=a 2,
Trong tam giác vuông BHC có BC=a góc HCB=450góc CED=450
Suy ra tam giác DME vuông cân tại M EM=DM=2a 2 ED=4a
Mà EA=AH= a AD=3a suy ra diện tích hình thang ABCD = 2
0,25 0,25
b Gọi (d) là giao tuyến của (P) và (Q) suy ra (d):
Gọi D là trung điểm BC, gọi I là tâm đường tròn
ngoại tiếp tam giác ABC
Ta có AH=2.ID; góc DIC=góc BAC=600; IC=R= 5
Thay vào (*) suy ra t=0 và t=3 Suy ra H=(0;-1) và H=(3;2)
BC đi qua M(-1;2) và nhận véc tơ uuurAH làm véc tơ pháp tuyến nên BC có PT:
0,25 0,25
C B
H
A' D
Trang 1026(2 5) 4
0,25
Chú ý:
- Nếu học sinh làm bằng cách khác nhưng đúng thì vẫn chấm điểm tối đa theo từng ý
- Nếu Câu 5, học sinh không vẽ hình hoặc vẽ sai cơ bản thì không chấm điểm
- Nếu trong một bài mà kết quả ý trước được sử dụng để giải ý sau, mà ý trước bị sai
hoặc chưa làm thì ý sau sẽ không được chấm điểm
………….Hết…………
Trang 11SỞ GD&ĐT QUẢNG TRỊ ĐỀ THI THỬ-KỲ THI THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT TRẦN THỊ TÂM MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
Câu 1: (2,0 điểm) Cho hàm số 3 2
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp điểm có tung độ y1
Câu 3: (0.5 điểm) Giải phương trình: 2 1
2log 3x2 6 log 5x2
Câu 4: (1 điểm) Giải hệ phương trình:
2 cos
I x xdx
Câu 6: (1 điểm) Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, SA = a Chân đường
vuông góc hạ từ S xuống mặt phẳng (ABC) là trung điểm cạnh BC Tính thể tích chóp S.ABC và khoảng cách giữa hai đường thẳng BC và SA theo a
Câu 7: (1 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; 1; 0) và đường thẳng d có
a) Tìm tọa độ hình chiếu vuông góc của điểm M lên đường thẳng d
b) Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d
Câu 8: (1 điểm) Trong mặt phẳng oxy cho tam giác ABC có phương trình cạnh BC là x - 2y + 3
= 0, trọng tâm G(4; 1) và diện tích bằng 15 Điểm E(3; -2) là điểm thuộc đường cao của tam giác ABC hạ từ đỉnh A Tìm tọa độ các điểm A, B, C
Câu 9: (0.5 điểm) Một hộp có 5 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh Lấy ngẫu nhiên 4
viên bi từ hộp Tính xác suất để 4 viên bi lấy được có số bi đỏ lớn hơn số bi vàng
Câu 10: (1 điểm) Cho các số thực dương , , x y z thỏa mãn: 5(x2 + y2 + z2 ) = 9(xy+ 2yz+ zx)
Tìm giá trị lớn nhất của biểu thức
1
x P
Trang 12ĐÁP ÁN - THANG ĐIỂM ĐỀ THI THỬ - KỲ THI THPT QUỐC GIA NĂM 2016
2
x y
Suy ra hệ số góc của tiếp tuyến là: y'(0)0; '( 3)y 9 0,25
Phương trình tiếp tuyến của (C) tại điểm (-3;1) là: y=9x+28 0,25
CÂU 2
(1,0 điểm) a) (0,5 điểm) b) Điều kiện: cosx 1 x k2 , k¢
Với điều kiện trên phương trình đã cho tương đương:
Trang 13Pt đã cho tương đương với log23x2 5 x26 3x2 5 x264 2
15x 4x 68 0
23415
x x
y x
Hệ pt có nghiệm duy nhất :x5, y1
0.25 0.25
0.25 0.25
1os2 sin 2 sin 2
I
0.25
0.25
0.25 0.25
Trang 140.25 0.25
CÂU 8
(1điểm)
Phương trình đường cao kẻ từ đỉnh A: 2x+y-4=0 Gọi A(a;4-2a), trung điểm
đoạn BC là M(2m-3;m) Ta có uuurAG(4a a; 2 3);GMuuuur(2m7;m1), mà
H
A
C
B S
K
Trang 152 b b b b Với b=9
2 ta có B(6; 9
2); C(2; 5
2) Với b=5
CÂU 9
(1điểm)
4 12
Gọi A là biến cố” 4 viên bi lấy được có số bi đỏ lớn hơn số bi vàng.”
+ 4 bi lấy được không có bi vàng: 4bi đỏ; 1 bi đỏ + 3bi xanh; 2 bi đỏ + 2bi
xanh; 3 bi đỏ + 1bi xanh;
+ 4 bi lấy được có đúng 1 bi vàng: gồm 1bi vang +2bi đỏ + 1 bi xanh, 1 bi
311
126
Trang 16Trường THPT Bố Hạ
NĂM HỌC 2015-2016 MÔN: TOÁN, LỚP 12
Thời gian làm bài: 150 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thi hàm số 2 1
x
Câu 2 (1,0 điểm) Cho hàm số 3 2
3 3 2
yx x x có đồ thị (C) Viết phương trình tiếp tuyến của
đồ thị (C) tại giao điểm của (C) với trục tung
Câu 3 (1,0 điểm) Cho hàm số 3 2
Câu 8 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có tâm I(1;3)
Gọi N là điểm thuộc cạnh AB sao cho 2
3
AN AB Biết đường thẳng DN có phương trình
x+y-2=0 và AB=3AD Tìm tọa độ điểm B
Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh Số báo danh
Trang 17ĐÁP ÁN ĐỀ THI THỬ KỲ THI QUỐC GIA THPT NĂM HỌC 2015-2016 LẦN 2
Thời gian làm bài: 150 phút, không kể thời gian giao đề
'3 6 3
đ '(0) 3
đ Phương trỡnh tiếp tuyến của (C) tại điểm A(0;-2) là yy'(0)(x 0) 3 3x 2 0,25
x x m x m (1)
2
22( 1) 3 0(2)
(2sinx1)( 3 sinx2cosx 2)sin 2xcosx(1)
(1)(2sinx1)( 3 sinx2cosx 2)cos (2sinx x1)
(2sin 1)( 3 sin cos 2) 0
Trang 18Hệ số của x8 trong khai triển trên ứng với 20 3 k 8 k 4
Vậy hệ số của x8 trong khai triển P(x) là 4 4 16
Gọi hình chiếu của S trên AB là H
Ta có SHAB SAB, ( )(ABCD) AB SAB, ( )(ABCD)SH(ABCD)
Kẻ Ax//BD nên BD//(SAx) mà SA(SAx)
(BD,SA) (BD, (SAx)) (B, (SAx)) 2 (H, (SAx))
0,25
đ
Trang 19Gọi I, K lần lượt là hình chiếu của H trên Ax và SI
Chứng minh được HK(SAx)
2
(2 1) 2 1 8 52 82 29
(2 1) 2 1 (2 1)(4 24 29)(2 1) 2 1 4 24 29 01
2 1 2
x
x x
Trang 21SỞ GD&ĐT BẮC GIANG
TRƯỜNG THPT NGÔ SĨ LIÊN
ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2
Giải các phương trình sau:
a) 2sin cosx x+6sinxcosx 3 0;
d x y và A(4; 8) Gọi E là điểm đối xứng với B qua C, F(5; 4) là hình chiếu vuông góc
của B trên đường thẳng ED Tìm tọa độ điểm C và tính diện tích hình chữ nhật ABCD
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh: Số báo danh:
Trang 22HƯỚNG DẪN CHẤM ĐỀ THI THỬ KỲ THI THPT QUỐC GIA MÔN TOÁN 12 lần 2
Hàm số nghịch biến trên (∞; 1) và (1; + ∞) Hàm số không có cực trị
Vẽ đồ thị đúng hình dạng và các điểm căn cứ, nhận xét đồ thị
0,25
0,25
0,25 0,25
2
x ¡ ta có y' x( )4x32mx = x x2 (2 2m),
(Cm ) có ba điểm cực trị khi y’(x) = 0 có ba nghiệm phân biệt, tức là
2 (2x x2m)0có ba nghiệm phân biệt
0,25 0,25
3
1log 50 log 50 log 50
2
150log 50 log log 15 log 10 1 1
3
Kết luận
0,25 0,5 0,25
4
a) TXĐ D = ¡
Phương trình đã cho (2sinx1)(cosx+3)0
0,5 0,25
Trang 232cos 3(v« nghiÖm)
656
Số hạng chứa x4 trong khai triển trên thỏa mãn 3k – 5 = 4 k = 3, suy ra số hạng
chứa x4 trong khai triển trên là 40x4
0,25 0,25 0,25 0,25
0,25
Trang 24Từ hai kết quả trên BI (SAC) BI = d(B; (SAC))
Dựa vào tam giác vuông ABH tính được BI 6 7
7
BI a Kl
0,25 0,25
7
Ta có Cd: 2x y 5 0 nên C(t; –2t – 5)
Ta chứng minh 5 điểm A, B, C, D, F cùng nằm trên đường tròn đường kính BD Do tứ
giác ABCD là hình chữ nhật thì AC cũng là đường kính của đường tròn trên, nên suy ra
được ·AFC900AC2 AF2CF2 Kết hợp với gt ta có phương trình:
(t4) ( 2t 13) 81 144 ( t 5) ( 2t 1) t 1
Từ đó ta được C(1; –7)
Từ giả thiết ta có AC // EF, BF ED nên BF AC, do C là trung điểm BE nên BF
cắt và vuông góc với AC tại trung điểm.
Suy ra F đối xứng với B qua AC, suy ra ∆ABC = ∆AFC
S ABC S AFCS ABCD S AFC (đvdt)
0,25 0,25 0,25 0,25
Trang 25
0,25
0,25
Trang 26SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH
TRƯỜNG THPT XUÂN TRƯỜNG
ĐỀ CHÍNH THỨC
ĐỀ THI THỬ THPTQG- LẦN 1 NĂM HỌC: 2015-2016 Môn: TOÁN
Thời gian làm bài: 150 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị của hàm số yx4 2x23
b) Giải phương trình: cos xsin 4xcos3x0
Câu 3 (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 2
Câu 4 (1,0 điểm) Giải phương trình 2.4x 6x 9 x
Câu 5 (1,0 điểm) Trong đợt thi học sinh giỏi của tỉnh Nam Định trường THPT Xuân Trường
môn Toán có 5 em đạt giải trong đó có 4 nam và 1 nữ, môn Văn có 5 em đạt giải trong đó có 1 nam và 4 nữ, môn Hóa học có 5 em đạt giải trong đó có 2 nam và 3 nữ, môn Vật lí có 5 em đạt giải trong đó có 3 nam và 2 nữ Hỏi có bao nhiêu cách chọn mỗi môn một em học sinh để đi dự đại hội thi đua? Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?
Câu 6 (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và
nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0
30 Tính theo a thể tích khối chóp S.ABCD và
khoảng cách từ điểm B đến mặt phẳng (SAC)
Câu 7 (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD Gọi M là điểm
đối xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội tiếp đường tròn (T) có phương trình: 2 2
(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170; đường thẳng BC đi qua điểm E(7;0)
và điểm M có tung độ âm
Câu 8 (1,0 điểm) Giải hệ phương trình:
Trang 27Hä và tªn thÝ sinh:
; SBD
1 1
Trang 28Giải phương trình: cos x sin 4x cos3x 0
cos x sin 4x cos3x 0 2sin 2x.sin x2sin 2x.cos 2x0 0,25
22sin 2x(s inx cos2x) 0 sin 2x( 2sin x sin x 1) 0
kπx2πsin 2x 0 x k2π
Trang 29C H
A
B
D S
I K
2 3log 2
x
3log 2
Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?
Có tất cả 5.5.5.5=625 cách n(Ω)625 0,25 Gọi A là biến cố “có cả HS nam và nữ đi dự đại hội”
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Tam giác SAB đều và nằm
trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD) Biết SD2a 3và góc tạo
bởi đường thẳng SC với mặt phẳng (ABCD) bằng 0
30 Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAC)
Gọi H là trung điểm của AB Suy ra
Vì BA2HA nên d B SAC , 2d H SAC ,
Gọi I là hình chiếu của H lên AC và K là hình chiếu của H lên SI Ta có:
ACHI và ACSH nên ACSHIACHK Mà, ta lại có: HKSI
Do đó: HK SAC
0,25
Trang 30Vì hai tam giác SIA và SBC đồng dạng nên . 6
6611
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD.Gọi M là điểm đối
xứng của B qua C và N là hình chiếu vuông góc của B trên MD.Tam giác BDM nội
tiếp đường tròn (T) có phương trình: 2 2
(x4) (y1) 25.Xác định tọa độ các đỉnh của hình chữ nhật ABCD biết phương trình đường thẳng CN là: 3x4y170;
đường thẳng BC đi qua điểm E(7;0) và điểm M có tung độ âm
Câu 7
(1,0 điểm)
I
M C
0,25
+ Lập ptđt IM qua I và IM CN : 4(x-4)+3(y-1)=0 4x+3y-19=0
+ M là giao điểm (T) với IM : M(7; 3)
Vì B,D nằm cùng phía với CN nên D(-1 ;1)
+Do BAuuur CDuuur => A(-1 ;5)
* Nếu không loại mà lấy cả 2 điểm D chỉ cho 0,75đ
Trang 33SỞ GD& ĐT VĨNH PHÚC
TRƯỜNG THPT YÊN LẠC ĐỀ KHẢO SÁT CHẤT LƯỢNG LẦN 2 - LỚP 12 NĂM HỌC 2015-2016
ĐỀ THI MÔN : TOÁN Thời gian làm bài 150 phút, không kể thời gian giao đề
Câu 1 (2,0 điểm): Cho hàm số 2
x có đồ thị kí hiệu là ( )C
a) Khảo sát và vẽ đồ thị ( )C của hàm số đã cho
b) Tìm m để đường thẳng y x m cắt đồ thị ( )C tại hai điểm phân biệt A, B sao cho AB2 2
b) Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham gia biểu diễn, tìm
xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số bạn nam nhiều hơn số bạn nữ
Câu 4 (1,0 điểm): Tìm giá trị nhỏ nhất của hàm số yx.logx trên khoảng (0;10)
Câu 5 (1,0 điểm): Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng : y 2 0 và các điểm (0;6), (4; 4)
A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C trên đường thẳng
sao cho tam giác ABC vuông tại B
Câu 6 (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu
vuông góc của S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và mặt
I , tâm đường tròn nội tiếp là (1;0)J Đường phân giác trong góc BAC· và đường phân giác
ngoài góc ·ABC cắt nhau tại K(2; 8) Tìm tọa độ các đỉnh của tam giác ABC biết đỉnh B có hoành độ
Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh:……….……….…….….….; Số báo danh:………
Trang 34- Đáp án chỉ trình bày một cách giải bao gồm các ý bắt buộc phải có trong bài làm của thí
sinh Khi chấm nếu thí sinh bỏ qua bước nào thì không cho điểm bước đó
- Nếu thí sinh giải cách khác, giám khảo căn cứ các ý trong đáp án để cho điểm
- Thí sinh được sử dụng kết quả phần trước để làm phần sau
- Trong bài làm, nếu ở một bước nào đó bị sai thì các phần sau có sử dụng kết quả sai đó
không được điểm
- Trong lời giải câu 6 và câu 7 nếu thí sinh không vẽ hình thì không cho điểm
- Điểm toàn bài tính đến 0,25 và không làm tròn
Trang 354 8 0(*)4( 2) 0
b Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ Chọn ngẫu nhiên 5 bạn tham
gia biểu diễn, tìm xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số
bạn nam nhiều hơn số bạn nữ
Trang 364 Tìm giá trị nhỏ nhất của hàm số f x( )x.logx trên khoảng (0;10] 1.0
Hàm số đã cho liên tục trên (0;10] Ta có '( ) log 1 log log
A B Viết phương trình tổng quát của đường thẳng AB Tìm tọa độ điểm C
trên đường thẳng sao cho tam giác ABC vuông tại B
Tam giác ABC vuông tại B nên uuur uuurBA BC 0 4t 16 4 0 t 3 C(3; 2) 0.25
6 Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh AB2a Hình chiếu của
S lên mặt phẳng (ABCD) trùng với trọng tâm G của tam giác ABC, góc giữa SA và
mặt phẳng (ABCD) bằng 30 Tính theo a thể tích khối chóp S.ABCD và cosin của 0
góc giữa đường thẳng AC và mặt phẳng (SAB)
1.0
Trang 37Trang 4/6
O G
Gọi M là trung điểm BC, O là giao điểm của AC và BD Ta có
5
AM AB BM a AG AM Vì SG vuông góc với mặt đáy,
nên góc giữa SA và mặt đáy là · 0
Hạ GI vuông góc với AB, I thuộc AB Nối S với I, hạ GK vuông góc với SI, K thuộc
AH là hình chiếu của AO lên (SAB) suy ra góc giữa AC và (SAB) là OAH· Xét tam
Trang 38Trang 5/6
3 2 1
-1 -2 -3 -4 -5 -6 -7 -8
HJB JAB JBA (góc ngoài tam giác JAB)
·JAC·JBC ( vì AJ, BJ là các đường phân giác)
CBH· ·JBC (nội tiếp cùng chắn cung CH¼ của đường tròn (I))
HBJ·
Suy ra tam giác HJB cân tại H, vậy HJ=HB và ·HJB·HBJ (1)
0.25
Lại có BJ, BK thứ tự là phân giác trong và phân giác ngoài góc ·ABC nên tam giác
x y Gọi d là đường thẳng qua I và vuông góc với AH, d
có véc tơ pháp tuyến rn 2uuurHJ 1; 8 , phương trình đường thẳng d là:
Trang 399 Cho các số thực dương x, y thỏa mãn điều kiện: xy 1 y Tìm giá trị lớn nhất của
biểu thức:
2
.6( )3
Trang 40SỞ GD&ĐT NGHỆ AN
TRƯỜNG THPT THANH CHƯƠNG III
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn: TOÁN
Thời gian làm bài: 180 phút ,không kể thời gian giao đề
Câu 1 (2,0 điểm) Cho hàm số y x3 3mx1 (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1
b) Tìm m để đồ thị của hàm số (1) có 2 điểm cực trị A, B sao cho tam giác OAB vuông tại O
(với O là gốc tọa độ )
Câu 2 (1,0 điểm) Giải phương trình sin 2x 1 6sinxcos 2x
Câu 3 (1,0 điểm) Tính tích phân
2 3 2 1
trực nhật Tính xác suất để 3 học sinh được chọn có cả nam và nữ
Câu 5 (1,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho điểm A4;1;3và đường thẳng
BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60o Tính thể tích khối chóp S ABC và tính
khoảng cách từ điểm I đến mặt phẳng SAB theo a
Câu 7 (1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC cóA 1; 4 , tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt BC tại D, đường phân giác trong của ·ADB có phương trình x y 2 0, điểm M 4;1 thuộc cạnh AC Viết phương trình đường thẳng AB
Câu 8 (1,0 điểm) Giải hệ phương trình
2 2