1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập tích phân chọn lọc

59 467 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 59
Dung lượng 1,52 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu bao gồm gần 2000 bài tích phân của nhiều dạng khác nhau.

Trang 1

xdx 8 4

0

42sin

1 1

2

2

32

dx x

x x

12 2 

1

ln 2

dx x

e x x

13 1   

0

7 2

1dx x

1

1dx x

0

2010

1 x dx x

17 4 

7 9 2

1

dx x

1

dx x

x

x

19 64 

1 3

1

dx x

0

4

1212

1

dx x x

2 3

1

dx x x

x

24  

0

2 2

1

1

dx x x

dx x

dx x

x

27 12 10

2

2

12

dx x x

x

28 1  0

2

4

4x

x dx

x x

dx

31 3   

2 2

45

32

dx x x

dx x

1

dx x

x

2 0 1 1

2 0 1 1 8 3

2011

2

12011

dx x

x

36    

3 1

2 6

1

1

dx x x

37 2  

0

3cos1

xdx x

Trang 2

40 2

6

3 2

xdx 42 2  

0

2 3

cos1cos

xdx x

3coscos

cos

dx x x

dx x

sincos

2sin

dx x x

2cos

dx x x

dx x

x

51 4 

6

3tantan

dx

52    6

0

2sin1cot3

x x

sinsin

xdx x

x x

55 2

4

4sin

x dx

x x

58 3 

4

2sin3

cossin

dx x

x x

59 2 

0 1 cos

cos2sin

dx x

x x

60 2  

0 1 3cos

sin2

sin

dx x

x x

61 4 

0

22sin1

sin21

dx x

x

62 6 

0

32cos

sinsin

dx x

x x

63 2 

3

cos1

x x

xdx

69 2 

0sin 3cossin

x x

xdx

70 2 

0

4 4

4cossin

sin

x x

xdx

Trang 3

71 dx

x

x x

2 21

1

dx e

e

x x

x e

dx

x 81 e x x dxx

1 32

1ln

dx x

x x

x

85    

5 ln

2

ln 10 e x e x 1

dx

88 3 0

1 x dx

2 1

1

dx x

4x

dx

98 1  

0 2

24

1

2 4

1

x x dx

29

x x dx

1

2 4 21

1

dx x

x

x

x x

1

2 4 211

x x

e e

dx

108

e e

e

x x

x

ln 3

Trang 4

x x

x

dx

110      

1 1

2x xdx 114    

0

cos

1 x dx x

xdx

1 0

2

dx e e

x x x 123    

3 1

2

ln1

dx e

x

3 2

xdx x

0

2 3

0

sin

coscos

xdx x

x

1

21ln

133 2

0

3 sin

cossin

2

xdx x

e x

134 10

2

1ln3

Trang 5

139 

0

2

sincos x xdx

e

dx x

0ln

dx x

x

2 

6

2sin

cos1

x x

6

2 2sin

2sincot

6

21cos

cossin

121

x x

22

0

2

13

0

4 4cossin

x

1

2 2

3  

0 2

3 512

157 2

6sin

2 32

4sin

1 cos

xdx G

Trang 6

11

dx A

1

B x dx

11

2

Ax xdx 190.

3 20

11

cos 2(sin cos 3)

Trang 7

dx U

214.

5

dx B

dx D

cos sin cos

.1

x dx R

tancos 2

5 41

Trang 8

3

2 2

E xx dx 243. 2

/ 2 sin 3 0

( 2 ) x

P xx e dx 253.

1

2 0

e x

) 1

0

1 2sin

1 sin 2

x dx x

1

2 ln

2

1

dx e

e

x x

265. 1

0

3 2

dx e

1

ln ln 3

14

dx x

 

Trang 9

2 cos

0.sin 2

dxx

xx

I

x

xx

I2 

0 1 cos

cos2sin

xdxx

12

280.

3

2 0

ln

e

dx x

x

0

2 5

xdxe

3 0

sin 2 1

dx x

dx

edxx

xI

1 2

dxx

x

2 3

I

1

4 0

I   2

0

2

2 3

4

942

xdx

I 301.  e 

xx

dxI

1 1 ln2

0

2004 2004

2004cossin

sin

dxxx

xI

303. 2 

0

3cos1

sin

4

dxx

Trang 10

2

10 5

dxI

2 0

xln 1+ x dx



2 1

Ix x 1dx

315.

1

2 0

Ix 1 x dx 326

e 3 1

xdxx

0

3 2

1dxxe

Trang 11

4 cos

1 sin

xdx I

2007 1

6

tancos

x dx x

4 0

sin 2

3 4sin os2

xdx I

2 0

Trang 12

dx x

1 sinos

4 1

2 1 2

x

dx x

1ln

2 0

xdx

(x 1) 

1 2 4 0

dx sin x cos x

e dx

dx

Trang 13

ln(x 1)

dx x

x 2 4 2

dx (cos x sin x)

sin x

dx cos x

2 2

2 2

dx cos x

1 3

2 0

x (1 x ) dx 

Trang 14

4sin x

dx (sin x cos x)

ln x dx (1 x) 

/ 4 2 0

(1 x   x ) dx

/ 2

x 2 0

x dx

dx x x

x x

466 

0

3 4sin

dx

472.

4 / 3 dx

x sin 2

x  1dx

1 2 0

(1 x ) dx 

2 / 2

x / 2

x lg xdx

0 e x 1

dx

Trang 15

cot gxdx sin x

2 2 0

/ 4

2 0

1 sin 2x

dx cos x

1

19 0

x sin xdx

a

2 2 2 0

xdx

Trang 16

dx x x

x x

dx x x

2arcsin

2211

cossin

dx x x

x x

535

1 2

2 0

537 1      

0

10 23213

e

x x

xdx

1 21ln

dx x x

0

2sin1

xdx x

543 3  

0 2

3 5

1

2

dx x

x x

sin

dx x

x x

1 550  

0

2cos1

sin

x

xdx x

x x

xdx

553 1  

0 2

65

114

x x x

2sin

dx x x

Trang 17

x x

3

dx e

e

e e

x x

x x

565.

3 1 2 0

x dx

ln 2

e dx

e  1

2 2 0

1

ln xdx x

2 2

Trang 18

   606 1 3ln ln

1

dx x

dx x

1 cos 0

dx x

1 1 0

dx x e

dx x

x dx x

x dx x

Trang 19

x dx x

dx x

xdx x

x dx x

0 ( 1)

dx x

1 1 0

x dx x

x dx x

2 ln5

1 ln2

x

x e

Trang 20

2 1

2 2 0

x

xx edx

2 0

x dx

ln(1 )

1

x dx x

Trang 21

1

1 2

8

4 sin 2

dx T

2

dx T

Trang 22

x dx x

cos

4 sin

dx x

Trang 23

1 2

ln( x 1)

dx x

sin

dx x

2 0

e

x dx x

Trang 24

2 5

3

2 2

2 3

2

dx x

2 2 2

1 x

dx x

0

sin

x dx x

1 1

x dx x

ln 3 9

x dx x x

Trang 25

1 1

x dx x

x dx x

x x

e dx e

1

2 0

.ln 2 4

x dx x x

e dx e

1 1

x e

x

e dx e

21

x

dx x x

Trang 26

dx x

)323(

x x x

dx x

x

x x

1

ln23

3

dx x

x

x x x

835

e x e

dx x e x e

ln

2

)3

(

4

2cottan

22

dx x

x

x x

dx x

x x

x x

839 2   

4

)ln(sin1

dx x

x x x

841

2

12 ( 2 1)

1

2

dx x

2

dx x

e

x e x e

x

e

843  

23ln

13ln

e

e x x dx

x

844 34

4sin

x x

1

dx x

x x

23sin4

dx x

0

)sin4(cos

2

sin

dx x x

4

(

x

dx x x

858

1

)14(

x

dx x

11

)ln(

)(

dx x

e x e

x e x e x e x e

sin

dx x

0

4cos

xdx

Trang 27

dx x

sin.cos3cos x x x dx

867 3   

4

cot2

870 1 

0

)71

dx x

0 1 sin2

)12cos2(

x

dx x

0

sincos

sin

dx x x

2)1)(

2(

48

dx x

x x

12 2

0cos sinsin

x x xdx

dx x

0

sin14cos

dx x x

123

dx x

x x

dx x e

223

dx x

x x

13

2

dx x

x

dx x

890

3

)1(

x

dx x

1

x

dx x

893 2

0

sin.cos

dx x e

894 3  cos   

0

sincos34

xdx x

x

x x

1

2ln1ln

x

x x

1

ln1ln

sin

xdx x

6

cos31

sin2cot

4

4cos

14

sin1

Trang 28

(

x

dx x

12234

dx x

x

x x x

1 4 2 1

12234

dx x

x

x x x

)4(

x

dx x x

905

1

)tan4(

x

dx x x

3sin

)22(

x x

dx x

dx

915 2

3sin

22sin12

sin

dx x x

1

2ln41ln

919 

0

sin.2

x x

x x

N n xdx

925 2 

0sin cos

4sin

4 4

dx x x

x

926  

01 sin

dx x

x

927 2

0.cos sin

dx e

2cos xdx

0

sin2cos2

sin

dx x x

sin

dx x

x x

dx x

x x

482532

dx x

x x

x x x

cos

31

ln.ln1

e

e

dx x

x x

Trang 29

936 e 

e

dx x

x x

1

2ln.ln

x x

dx x

1

dx x

x

941 1 0

)41(

x x

xdx

946 2

4

2sincos

x x

dx

x 948

20sin

0cos

12(

x

958 46

2cossin

x x

959 1 

0

)1ln(

.e x e x dx 960 4

6

2sin

)ln(cos

1

dx x

962

e

dx x

xdx x

0

2tan

xdx

Trang 30

971 2   

1

)22

cos

dx x x

973 2 

0

)cos1ln(

sin

dx x

0

)21

xdx x

21

0 1 2

21ln dx x

x

0

2

3e x dx x

ln

1(

e

6

)ln(tan.cos

dx x

x e x

x e

986.4  

1

ln1

01 cos2

2sin

dx x

x x

988.2

0

2sinsin

xdx x

x tgx

e

0

2cos xdx

2

3sin

0

)21ln(`

e

dx x

x n x n xdx

x

xdx

1000. 4 3

2

cossin

2cos

xdx

1002.

0sin2 2

xdx

0cos2sin2

dx x x

Trang 31

x x

xdx x

0 cos sin

cos1sin

Z n x n x n

xdx x

2

2x x dx

1010.2  

1

2

22

)12

(

x x

dx x

0

2 2)4

(x x

dx

1013.1 

0 21

)2(

x

dx x

1014.1   

0

2)1)(

2

(

)24

(

x x

dx x

1015.2 31    

3

2 2

)52)(

1(

)332(

x x x

dx x x

1016.1 

0

2 2)1

)1(

)4

3

(

x

dx x

1018.3  

2 3 2

23

333

dx x

x

x x

1019.3  

2

3 2)1(

1

dx x

x x

1

4 21

)1(

x

dx x

1

2 4 21

)1(

x x

dx x

1023.1  

0

2 4

2

43

)2(

x x

dx x

1024.2 

1 4 21

)1(

x

dx x

0 cos6

x dx

3cos

dx x

0

)tan(tan4 3

dx x

1031.2 

0

cos)sin(sin3 2 2

xdx x

40

)cos

sincos

sin1

2cos(

3

dx x

x x

3

sin x x x dx 1034.3 

01 sin

sin1

dx x

1036.4

0 cos4

2sin

dx x

x

1037.3

6

4cos4sin

Trang 32

dx x

x x

x x

cos2

x x

1044.

1 1 2

3 61

sin

dx x

x x

1045.

4

4

13

4cos4

sin

x x

dx x

x

1048.4

0tan6

dx x x

x

1051 3

4

3cossin

x

1053.3

64

cos

xdx x

07 cos2

sin

dx x

x x

x x

dx x x

dx x

x

x x

x

)1)(

Trang 33

dx n x

3 6 2

3 2

2

x x dx

1083. 3 

3 2 1

21

x

dx x

1084. 5 

12

x

dx x

1085. 3 

21

x

dx x

1086.1 

0

)1( x2 5dx 1087.1 

0

3

dx x x

0

23

x

1092. 3 

0 2

31

x

dx x

1093.2  

2

x x xdx

1

)

sinln

(cos

dx x

x x

x

1100.3

0

)ln(cos.2

sin

dx x

0

2sincos

xdx x

0

sin2cos x xdx x

31

xdx x

1

ln31

x e

1

ln1ln

x e

)1ln(

e

dx x

dx x

dx x

x x

1110.

1

1

dx x

x

Trang 34

1111.3  

4

lncos

1

2.3

x

dx x

e x

1113.4

0 cos3

sin.2

dx x

x x

dx x

x e

x x

0

12ln

4

2cos

12

dx m x

b

dx x

a

x a

0

)41(

x x

2

cos

xdx x

x

01ln

dx tgx

ln

dx x

x x

dx x

dx

1135.2 

0

sin(cos

xdx x

)1ln(

dx x

x x

0

)sin1ln(

cos

dx x

Trang 35

1140.2 

0

)sin1ln(

sin

dx x

0

1.e x dx

x 1142.4

6

)ln(cotcos

cos

1

dx x x

x e x

0

3

x x

1148.  

0sin 2cos 3

1cossin

dx x x

x x

dx x x

dx x x

x x

cos

1

dx x tg

1153.2

0

5sin3

0

)2sin(

x n

1155.

0

5sin3

n nxdx x

n

20

1

2.12)2

a0&nN

x x

x x

1 1

2)1)(

b a x

dx x

f

0)(1

2

13

6cos6

sin

x x

1164.4

4

2cossin

x x

dx

Trang 36

1166. 5

(5x3) dx

3 2

cos

tg x dx x

2 3

91-x

x dx

2

1(1 ) dx

2 1

xdx

1197.

2 11

1 3 0(xx x dx)

1(3sinx 2cosx )dx

2 1( x1)(xx1)dx

sin

1 3

x dx cosx

1

x xdx

1 2 3

x dx

x

Trang 37

dx

x x

1 2 1

1(1 3 x ) dx

2 sin 4

sin

1 3

x dx cosx

1

x xdx

1 23

x dx

11

2ln 1 1

e dx x

x x

2 2

1(1 ln )

1

x xdx

1 0

1

x dx x

3 3 1

ln

e

x dx x

1245.

1

2 0

ln

e

x dx x

Trang 38

1 x dx

tan ln(cos )cos

dx x

5 2

x dx

1

x dx x

1

x dx

ln 1(1 x) 1

x dx x

1 0

dxI

cos x sin x 1 1279 0

xdxI

1

2 0

sin x

sin x cos x

Trang 39

cos x

2 x 0

I e sin xdx 1285.

2 4 0

1290.

2

x 0

101 0

1( 1)

11

11

11

1

11

Trang 40

4 1 3

11

Trang 41

sinsin 3 cos

2 3

sin 1 coscos

Trang 42

( sin )sinsin sin

tancos 1 cos

Trang 43

3 6 0

tancos 2

tancos 1 cos

sincos

e

3ln2

2 3

Trang 44

ln ln 1

5 2

ln( 1)

x

1 2

0

1ln1

1( 1 ) 

   x

x

x

Trang 45

1453

4

2 0

x

2

2 0

.1

sincos

cossin

sincos

x

x x

I 2 0

2

2sin1

)sin(

2 3

( sin )sin(1 sin )sin

cos(1 sin2 )

Trang 46

1485. Cho hàm số f(x) liên tục trên R và f x( )  f x( ) cos4x với mọi xR

1486. Cho hàm số f(x) liên tục trên R và f x( )  f x( ) 2 2cos2 x, với mọi xR

dx x

x

01 cos

sin1

dx e x

sin4

1493. 2   

0sin

dx

0 2cos

sin

x

x x I

x b

x a

x x I

2 2 2 2

sincos

cossin

2cos

x x

x I

1498  2 

0

) 2 4 cos(

dx x

dx x

Trang 47

3 2

0

sinI

sin cos

x dx

2 1

sinsin cos

1 dx

3 e

2 x

tan x

dx cos x cos x 1

1528.

2 1

2 0

cos x

dx cos 2x 7

Trang 48

1530

2 x

1

2 0

x e

dx (x  2)

x

dx x

)323(

x x x

dx x

1537 2   

4

)ln(sin1

dx x

x x x

x x

xdx

10

)21ln(

11

x x

)(

dx x

e x e

x e x e x e x

dx x

x x x

1

dx x

x x

1

2ln41ln

3

dx x

x x

0

)(cos)sin1(

N n xdx

x n

Trang 49

ln x

dx x(ln x 1) 

ln(sin x)

dx cos x

dx

1 sin x cos x0

x x

6

cos31

sin2cot

x x

Trang 50

1580  3 6 219 22

x x

18 5

1587  4 1

x xdx

1

2 3 4

2

x x x x

dx x

1589  4 2 1

x x

dx

1590.  31

x dx

1597.  6 1

4

x

dx x

1598.  6 1

6

x

dx x

1602

b ax

1

x x

dx x

53

x x101dx

9912

17

1611 1 

0

3 2 3

)1

( x

x

1612 1 

0 2 5

4

x x

dx

1616 3 

3 51

2

dx x

x x

Trang 51

1620 edx

x

x x

1

lnln3

1

1621 2 

0

2 2

sin4cos

2sin

dx x x

x

1622 2 

0

2 3sin1

sin.cos

dx x

x x

1623 6 

0

2 2

cossin

2

2sin

dx x x

x

1624 1 

0

2 2

4 x

dx x

1625  

2 1

2 2

)2)(

1(x x

dx

1627

0 2

5 2

2sinsin

x

x

1

2ln1ln

2 2 1

ln xdx x

1cos

2

sin

1 cos

x dx x

4 sin

xdx x

 

Trang 52

1649

2

2 2

2

1

dx x

2 3

sin 1 cos

cos

dx x

x

dx x

Trang 53

1666

2

0

1 cos

0

2

20132

65

sin 0

sinx-sin sìn2x+

1 6  x  3 x dx

1

2 1

4

sin

x x

2 tan cos

Trang 54

ln 1

1

ln 1 ln

e

x dx x

1 1

xx

e dx x

2 2 0

3

2014

dx x

1 2

1698

x x

     

2 0

2cos1

sin1

cos11

dx x

x x

x x

x x x

0

2 2

cossin

12sincossin

2cos1

sin1

cos11

x x

x x

1

31ln

1lnln

e x

1 1 ln

11

xe x

xe x

12

1

21lnln

dx x x

x

x

1707    

1 0

2 2 tan

tan

cos1

2 2

x e

1

1

11

x x

x

x x

x x

1710 1  

0 2 2

4

4x dx x

ln2ln

e

dx x x

x x

Trang 55

1712  dx

x x

x

1 

0

5 5

dx x x

3 x

x

x

e e

dx e

sin

x x

dx e x

0

4 2

1 x dx

x e

x x x

x

1 ln

2ln

2sin1

2sin14

x

x x

x x

x x x

0

2cossin

cossinsin

dx x x x

x x

xe x

2cos1

2sin4sin24

1726 4 

0

4 4

cossin

4sin

x x

e

    

1

2 2

1 0

3

1ln1

2x x dx

dx x

x x

0

2cos

cossin

0 4 8

1

1736  11 5

8x x

dx

1737  4 4 36 2 7 4

x x x x

dx

1738.  8 1

x dx

dx x

x x x

dx x

Trang 56

x x x x

dx x

1750 x  x2008dx

31

x

x x

1 22

2ln4

1

1753

1 1

2006

sin xdx x

3

3 3sin

sinsin

x x

11

2sin

2 2

221sin

dx x x

ln

1759 4   

0

tan1ln

x dx

x

x x

x x

x x

3

cossin

cossin

x

x dx

e x

x x

sincos

1

x

x x

x x

xdx x

x x x

x

1

2 3 3

3

ln538

1771. 2 

0 1 3sin

2sin3

cos

x

x x

1ln2ln

1774. 2

0

2 4

sincos

dx x x

x x

2

sin7cos4

dx x

x x

1777 3  

2

2

32

4

x x

x x x

x x x

1   

2

23

23

x

x x

x

e

x x x

x

2 2

1

5cos2sinsin

Trang 57

21

1

1785 x x sinx dx

122 2

1

1787 2 

0

6 6

6cossin

sin

dx x x

1789 2

0

2

3sin

6tan

2cot

1795  sin3x 4 cos2x3dx 1796  sinx 5 cos5x2dx

x x

x

2 55tan3

tan

8sin

1798  sinx 2 cosx4dx 1799  sin5x 9 cos5x111dx

dx x

x

5 4

7

3cos

3tan

x x

4tan

93sin

3cot

x x

1811. cos2xcos5xcos9xdx

1812.  cosx3sin8xdx 1813.  sinx4 sin3xcos10xdx 1814.  cosx 5 sin5xdx

x x

x x

2cottan

4sin3

4

Trang 58

3 1

2 2

23

1 x x x

a x

2 2

2 2

1830 a

a

dx x

a x

2 2 2

2 2

x x

3 1

3

2 2

11

dx

x x

x x

4

8 4

2

1.2

x x

2 2

1

11

11

1

1850

 2 3

2 3

2

1

.1

xdx x

1 0

2 2

2

x

dx e

x x

1860 x2 lnx 2dx 1861 dx

x

x x

1ln

x

x x

1ln

x x

x x

x

1864

0

ln

x

xdx x

1866 x2sin lnx dx 1867   

e

dx x

sin xdx

e x

Trang 59

dx x

x x

x

x

2 1 4

cossin2

xdx x

3

cos1lncos

dx x x

x x

cossin

dx x x

x

dx x

0

2sin1costan

dx x x

x

0

4sincos2

sin

dx x

x

e e

x x

cos

dx x

e x

1885

Ngày đăng: 25/09/2015, 11:12

TỪ KHÓA LIÊN QUAN