1. Trang chủ
  2. » Giáo án - Bài giảng

Toán đại HK1

133 1,8K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 133
Dung lượng 2,93 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

→ GV vào bàimới + Hãy viết một đơn thức và một đa thức + Hãy nhân đơn thức đó với từng hạng tử của đa thức vừa viết + Cộng các tích tìm được GV lưu ý lấy ví dụ SGK HS đọc bài ?1 SGKMỗi H

Trang 1

Chương 1 : PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

I MỤC TIÊU :

− HS nắm được quy tắc nhân đơn thức với đa thức

− HS thực hiện thành thạo phép nhân đơn thức với đa thức

II CHUẨN BỊ :

-Giáo viên : − Bài Soạn − SGK − Bảng phụ

-Học sinh : − Ôn lại các kiến thức : đơn thức ; đa thức ; nhân một số với một

tổng Nhân hai lũy thừa cùng cơ số − SGK − dụng cụ học tập

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 5’ Nhắc lại kiến thức cũ

− Đơn thức là gì ? Đa thức là gì ?

− Quy tắc nhân hai lũy thừa cùng cơ số

− Quy tắc một số nhân với một tổng

τ Đặt vấn đề : (1’) Ta đã học một số nhân với một tổng :

A (B + C) = AB + AC Nếu gọi A là đơn thức ; (B + C) là đa thức thì quy tắc nhânđơn thức với đa thức có khác gì với nhân một số với một tổng không ? → GV vào bàimới

+ Hãy viết một đơn thức

và một đa thức

+ Hãy nhân đơn thức đó

với từng hạng tử của đa

thức vừa viết

+ Cộng các tích tìm được

GV lưu ý lấy ví dụ SGK

HS đọc bài ?1 SGKMỗi HS viết một đơn thứcvà một đa thức tùy ý vàobảng con và thực hiện

HS kiểm tra chéo lẫnnhau

1 Quy tắc :

a) Ví dụ :4x (2x2 + 3x − 1)

= 4x.2x2 + 4x.3x + 4x (−1)

= 8x3 + 12x2− 4xb) Quy tắc

Muốn nhân một đơn thứcvới một đa thức ta nhânđơn thức với từng hạng tửcủa đa thức rồi cộng các

Tuần : 1

Tiết : 1

Ngày soạn: 15/08/2010 Ngày dạy: 16/08/2010

Trang 2

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

GV gọi 1 HS đứng tại chỗ

trình bày GV ghi bảng

GV giới thiệu :

8x3 + 12x2− 4x là tích của

đơn thức 4x và đa thức

2x2 + 4x − 1

Hỏi : Muốn nhân một đơn

thức với một đa thức ta

làm thế nào ?

− 1HS đứng tại chỗ trìnhbày Chẳng hạn

4x(2x2 + 3x − 1) = 4x.2x2+ 4x.3x + 4x (−1) = 8x3 + 12x2− 4x

− 1HS nêu quy tắc SGK

− Một vài HS nhắc lại

tích với nhau

15’ HĐ 2 : Áp dụng quy tắc

GV đưa ra ví dụ SGK làm

tính nhân :

(−2x3)(x2 + 5x − 21 )

GV cho HS thực hiện ?2

(3x3y − 12x2 + 51xy).6xy3

GV gọi 1 vài HS đứng tại

chỗ nêu kết quả

GV gọi đại diện của nhóm

trình bày kết quả của

nhóm mình

GV nhận xét chung và sửa

sai

− 1HS lên bảng thực hiện

− Cả lớp nhận xét và sửasai

− Cả lớp làm vào bảngcon

− Một vài HS nêu kết quả

− Cả lớp nhận xét và sửasai

HS : đọc đề bài ?3

HS hoạt động nhóm

− Đại diện nhóm HS trìnhbày kết quả

− Các HS khác nhận xétđánh giá kết quả của bạn

2 Áp dụng :

ví dụ : Làm tính nhân (−2x3)(x2 + 5x − 21)

= (−2x3).x2 + (−2x3).5x +(−2x3) (−12)

=18x4y4− 3x3y3 + 56x2y4

τ Bài ?3 : ta có :+ S = [(5x+3)+(23x+4y)].2y = (8x+3+y)y

Trang 3

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

a/ x2(5x3− x − 21)

c) (4x3− 5xy + 2x)(− 21xy)

GV nhận xét và sửa sai

GV cho HS làm bài 2a tr 5

HS : cả lớp quan sát Suy nghĩ

− 1HS đứng tại chỗ điềnvào ô trống

− Các HS khác nhận xétMột vài HS nhắc lại quytắc

= 5x5− x3− 21x2

c/ (4x3− 5xy + 2x)(− 21 xy)

= −2x4 + 25x3y − x2y

τ Bài 2a tr 5 SGKa/ x(x − y) + y (4 + y)

2’

4 Hướng dẫn học ở nhà :

− Học thuộc quy tắc nhân đơn thức với đa thức

− Làm các bài tập : 2b ; 3 ; 4 ; 5 tr 5 − 6

− Ôn lại “đa thức một biến”

I MỤC TIÊU :

− HS nắm vững quy tắc nhân đa thức với đa thức

− HS biết trình bày phép nhân đa thức theo các cách khác nhau

II CHUẨN BỊ :

Giáo viên : − Bài Soạn − SGK − Bảng phụ

Học sinh : − Thực hiện hướng dẫn tiết trước

III TIẾN TRÌNH TIẾT DẠY :

Tuần : 1

Tiết : 2

Ngày soạn: 17/08/2010 Ngày dạy: 19/08/2010

Trang 4

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 8’

HS1 : − Phát biểu quy tắc nhân đơn thức với đa thức

Áp dụng làm tính nhân : (3xy − x2 + y) 32x2y

Đáp số : 2x3y2− 32 x4y + 32 x2y2

HS2 : a) Thực hiện phép nhân, rút gọn, tính giá trị biểu thức :

x(x2− y) − x2 (x + y) + y(x2− x) tại x = 21 và y = − 100

Đáp số : −2xy = − 2 21 (−100) = 100

b) Tìm x biết : 3x (12x − 4) − 9x (4x − 3) = 30 Đáp số : x = 2

τ Đặt vấn đề :

Các em đã học quy tắc nhân đơn thức với đa thức Ta có thể áp dụng quy tắc này để nhân đa thức với đa thức được không ? → GV vào bài mới

3 Bài mới :

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

6’

HĐ 1 : Hình thành quy

tắc nhân hai đa thức :

GV cho HS làm ví dụ :

(x − 2) (6x2− 5x + 1)

GV gợi ý :

+ Giả sử coi 6x2 − 5x + 1

như là một đơn thức Thì

ta có phép nhân gì ?

+ Em nào thực hiện được

phép nhân

GV : Như vậy theo cách

làm trên muốn nhân đa

thức với đa thức ta phải

đưa về trường hợp nhân

đơn thức với đa thức hay

dựa vào ví dụ trên em nào

có thể đưa ra quy tắc phát

biểu cách khác

Hỏi : Em có nhận xét gì

HS suy nghĩ làm ra nháp

Trả lời : ta có thể xem nhưđã có phép nhân đơn thứcvới đa thức

HS : thực hiện(x − 2)(6x2− 5x + 1)

1 vài HS nhắc lại quy tắc

HS : Nêu nhận xét SGK

= 6x3−5x2+x−12x2+10x −2

= 6x3− 17x2 + 11x − 2

b) Quy tắc :Muốn nhân một đa thứcvới một đa thức ta nhânmỗi hạng tử của đa thứcnày với từng hạng tử của

đa thức kia rồi cộng cáctích với nhau

τ Nhận xét : Tích của hai

Trang 5

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

về tích của hai đa thức ?

GV cho HS làm bài ?1

làm phép nhân

đa thức là một đa thức

5’

HĐ 2 : Cách 2 của phép

nhân hai đa thức

GV giới thiệu cách nhân

thứ hai của nhân hai đa

thức

Hỏi : Qua ví dụ trên em

nào có thể tóm tắt cách

HĐ 3 : Áp dụng quy tắc :

GV cho HS làm bài ?2

τ GV chốt lại : Cách thứ

hai chỉ thuận lợi đối với

đa thức một biến vì khi

xếp các đa thức nhiều

biến theo lũy thừa tăng

dần hoặc giảm dần ta phải

GV gọi đại diện nhóm

trình bày cách giải

HS : ghi đề bài vào vở

2 HS lên bảng giải

HS1 : Câu a

HS2 : Câu b(yêu cầu HS làm 2 cách)

HS : nhận xét và sửa sai

− Cả lớp đọc đề bài

HS : hoạt động nhóm

− Đại diện nhóm trìnhbày HS khác nhận xét và

2 Áp dụng :

Bài ?2 :a) (x + 3)(x2 + 3x − 5)

=x3+3x2−5x+3x2 + 9x − 15

= x3 + 6x2 + 4x − 15b) (xy − 1)(xy + 5)

τ Nếu x = 2,5m ; y = 1mthì diện tích hình chữ nhật

×

+

Trang 6

HĐ 4 : Củn g cố :

GV cho HS làm bài tập 7

(8) SGK

GV gọi 1HS lên bảng

GV gọi HS nhận xét

Hỏi : Từ câu b, hãy suy ra

kết quả phép nhân

GV treo bảng phụ ghi đề

bài 9 tr 8 SGK

GV gọi 1 HS đứng tại chỗ

đọc kết quả và điền vào

bảng phụ

HS : đọc đề bài 7 tr8

− 1HS lên bảng trình bày

HS Nhận xét và sửa saiTrả lời : vì (5 − x) và (x-5)là hai số đối nên :

5 − x = − (x − 5)Nên chỉ cần đổi dấu cáchạng tử của kết quả

HS : quan sát đề bài trênbảng phụ và suy nghĩ cáchtính nào cho đơn giản

− 1 HS lên bảng đọc kếtquả và điền vào bảng phụ

HS khác nhận xét và sửasai

τ Bài 7 tr 8 SGK :

a) (x2− 2x + 1)(x − 1)

= x3− x2− 2x2 + 2x + x −1

= x3− 3x2+ 3x − 1b) (x3− 2x2 + x − 1)(5 − x)

= 5x3− x4 − 10x2 + 2x3 +5x − x2− 5 + x

= −x4+ 7x3− 11x2 + 6x − 5

vì (5 − x) = − (x − 5)Nên kết quả của phépnhân :

(x3− 2x2 + x − 1)(5 − x)là:−x4+ 7x3− 11x2 + 6x − 5

τ Bài 9 tr 8 SGK :Điền kết quả tính đượcvào bảng

Giá trị x và y Giá trị B/thức

3’

4 Hướng dẫn học ở nhà :

− Nắm vững quy tắc − Xem lại các ví dụ

− Làm các bài tập : 10 ; 12 ; 13 ; 14 tr 8 − 9 SGK

Hướng dẫn bài 12 : Làm tính nhân ; thu gọn các hạng tử đồng dạng Thay giá trị x

14 : Viết 3 số tự nhiên liên tiếp chẵn : x ; x + 2 ; x + 4 và lập hiệu : (x + 2) (x + 4) − (x + 2) x = 192

Trang 7

Giáo viên : − Bài Soạn − SGK − SBT

Học sinh : − Học thuộc bài và làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 7’

HS1 : − Nêu quy tắc nhân đơn thức với đa thức

Áp dụng : Rút gọn biểu thức : x(x − y) + y(x − y) Đáp số : x2− y2

HS2 : − Nêu quy tắc nhân đa thức với đa thức

Áp dụng làm phép nhân : (x2y2− 21 xy + 2y) (x − 2y)

Đáp số : x3y2− 21xy + 2xy − 2x2y3 + xy2− 4y2

GV ghi đề bài lên bảng

b) Rút gọn biểu thức :

− Cả lớp làm ra nháp

− 1HS khá lên bảng

− 1HS khác nhận xét vàsửa sai

HS : cả lớp làm vào bảngcon

τ Bài tập 5b tr 6 SGK :b)xn − 1(x + y)− y(xn − 1+ yn − 1)

= xn − 1+1 + xn − 1.y − yxn − 1 −

− yn − 1+1

= xn− yn

τ Bài tập 8b tr 8 SGKb) (x2− xy + y2)(x + y)

= x2 + x2y − x2y − xy2 +

Tuần : 1

Trang 8

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

GV gọi 1HS lên bảng

− Gọi 2 HS lên bảng

đồng thời mỗi em một

câu

− Cho lớp nhận xét

− GV sửa sai

− 1HS lên bảng giảng

Trả lời : Nhân mỗi hạngtử của đa thức này vớitừng hạng tử của đa thứckia rồi cộng các tích

=21x3−5x2−x2+10x+23x−15

= 21x3− 6x2 + 232 x − 15b) (x2− 2xy + y2)(x − y)

GV cho HS đọc đề bài 11

Hỏi : Em nào nêu hướng

HS : lên bảng thực hiện

− 1 vài HS nhận xét vàsửa sai

τ Bài tập 11 tr 8 SGK :

Ta có :(x − 5) (2x +3) − 2x(x − 3)+ x + 7

= 2x2 + 3x − 10x − 15 − 2x2

+ 6x + x + 7 = − 8 Nên giátrị của biểu thức không phụthuộc vào biến x

12’

HĐ 3 : Giải bài tập tìm x

τ Bài tập 13 tr 9 SGK :

GV cho HS đọc đề bài

Hỏi : Cho biết cách giải ?

Gọi 1 HS lên bảng giải

− Cho lớp nhận xét và

sửa sai

τ Bài tập 14 tr 9 SGK :

− Gọi HS đọc đề bài 14

Hỏi : Em nào nêu được

cách giải ?

HS đọc đề bàiTrả lời : Thực hiện phépnhân và thu gọn, chuyểnmột vế chứa biến và mộtvế là hằng số

1 HS : lên bảng giải

− Các HS khác nhận xétvà sửa sai

HS : đọc đề bài 14

− Trả lời : Gọi 3 số chẵnliên tiếp đó là x; x+2;x+ 4

τ Bài tập 13 tr 9 SGK :

Ta có :(12x − 5)(4x − 1) + (3x − 7)(1 − 16x) = 81

⇔ 48x2 − 12x − 20x + 5 +3x − 48x2− 7 + 112x = 81

⇔ 83x − 2 = 81

⇔ 83x = 83

⇔ x = 1

τ Bài tập 14 tr 9 SGK :Gọi 3 số chẵn liên tiếp đólà : x ; x + 2 ; x + 4

Trang 9

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

(giáo viên gợi ý)

Gọi 1HS lên bảng giải

Cho lớp nhận xét và sửa

sai

Theo đề bài ta có :(a+2)(a+4)−(a+ 2) a = 192

HS : lên bảng giải

− 1 số HS khác nhận xétvà sửa sai

Ta có :(x+2)x+ 4) − x(x + 2) = 192

x2+4x+2x+8− x2− 2x = 1924x = 192 − 8 = 184

x = 184 : 4 = 46Vậy ba số tự nhiên chẵnliên tiếp là : 46 ; 48 ; 502’ HĐ 4 : Củn g cố :

− Yêu cầu HS nhắc lại quy tắc nhân

đơn, đa thức

HS : nhắc lại 2 quy tắc

2’

4 Hướng dẫn học ở nhà :

− Xem lại các bài tập đã giải

− Làm các bài tập : 12 ; 15 tr 8 − 9 ; bài 9 ; 10 tr 4 SBT

Giáo viên : − Bài Soạn − SGK − SBT − Bảng phụ hình 1 (9)

Học sinh : − Học thuộc bài và làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 7’

Trang 10

b) (x − 21 y)(x − 12y) Đáp số : x2− xy + 41 y2

HS2 : Áp dụng quy tắc nhân hai đa thức : (a + b)(a + b)

Giải : (a + b) (a + b) = a2 + ab +ab + b2 = a2 + 2ab + b2

GV đặt vấn đề : (a + b) (a + b) = (a + b)2 gọi là hằng đẳng thức đáng nhớ Hằng đẳngthức đáng nhớ có rất nhiều ứng dụng trong toán học → vào bài mới

= a2 + 2ab + b2 gọi là bình

phương của một tổng

Hỏi : Nếu A ; B là 2 biểu

thức tùy ý ta cũng có :

Trả lời : Bình phương của

1 tổng hai biểu thúc

3 HS đồng thời lên bảngtính

a) (a + 1)2 = a2 + 2a + 1b) x2 + 4x + 4 = (x + 2)2

8’

HĐ 2 : Bình phương của

một hiệu :

GV cho HS làm bài ?3

− Chia lớp thành hai nhóm

Hỏi : Với hai biểu thức A ;

B tùy ý, ta có (A − B)2 = ?

HS : hoạt động nhóm Nhóm 1 : Áp dụng Hằngđẳng thức thứ I để tính

[a + (−b)]2

Nhóm 2 : Áp dụng quy tắcnhân đa thức tính (a − b)2

− Trả lời : Bằng nhau

HS nghe giới thiệu

c) 992 = (100 − 1)2

Trang 11

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

GV yêu cầu HS phát biểu

8’

HĐ 3 : Hiệu hai bình

phương :

GV cho HS làm bài ?5 áp

dụng quy tắc nhân đa thức

Làm phép nhân :

HS lên bảng giải (câu c

GV có thể gợi ý)

HS1 : câu a

HS2 : câu b

HS3 : câu c

3 Hiệu hai bình phương :

Với A và B là hai biểuthức tùy ý, ta có :

A2− B2 = (A +B)(A − B)

(3)

τ Áp dụng :a) (x + 1)(x − 1) = x2− 1b) (x − 2y)(x + 2y) = x2 −

Hương nêu nhận xét như

vậy đúng hay sai ?

Hỏi : Sơn rút ra được hằng

đẳng thức nào ?

GV cho HS làm bài tập 17

tr 11 SGK :

GV gọi 1 HS lên bảng giải

GV hướng dẫn áp dụng

Tính : 252 chỉ cần tính :

2 (2 + 1) = 6 rồi thêm số

25 vào bên phải

HS : cả lớp đọc đề và ápdụng hằng đẳng thức tính :(5 − x)2 = 25 − 10x + x2

Vậy Hương nêu nhận xétsai

HS Trả lời : (A − B)2 = (B − A)2

HS cả lớp làm ra nháp

− 1HS lên bảng trình bày

HS : nghe GV hướng dẫncách tính nhẩm

τ Bài 17 tr 11 SGK :

Ta có : (10a + 5)2

= 100a2 = 100a + 25

= 100a (a + 1) + 25Áp dụng tính :

252 = 625

Trang 12

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

− Yêu cầu HS nhẩm 352

GV cho HS làm bài tập 18

tr 11 SGK

− Gọi 1HS đứng tại chỗ

điền vào “ ”, GV ghi

bảng

HS : nhẩm 3 4 = 12Vậy : 352 = 1225

HS : cả lớp suy nghĩ

− 1 HS đứng tại chỗ trả lời

352 = 1225

652 = 4225

752 = 5625

τ Bài 18 tr 11 SGK :a) x2 + 6xy + 9y 2

= (x + 3y)2

b) x 2− 10xy + 25y2

= (x 5y)2

4’

4 Hướng dẫn học ở nhà :

− Học thuộc ba Hằng đẳng thức : Bình phương của một tổng, bình phương của mộthiệu, hiệu hai bình phương

− Làm các bài tập : 16 ; 20 ; 23 ; 24 ; 25

− Hướng dẫn bài 25 :

a) Đưa về dạng (A + B)2 trong đó A = a + b ; B = C

b) Đưa về dạng (A − B)2 trong đó A = A − B ; B = C

c) Đưa về dạng (A + B)2 hoặc (A − B)2 trong đó A = a hoặc A = a + b

Giáo viên : − Bài Soạn − SGK − SBT

Học sinh : − Học thuộc bài và làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1 Ổn định lớp : 1’ Kiểm diện

Tuần : 2

Tiết : 5

Ngày soạn: 23/08/2010 Ngày dạy: 25/08/2010

Trang 13

2 Kiểm tra bài cũ : 6’

HS1 : − Phát biểu hằng đẳng thức “Bình phương của một tổng”

Áp dụng : Viết biểu thức sau dưới dạng bình phương của một tổng

x2 + 2x + 1 Kết quả : (x + 1) 2

HS2 : − Phát biểu hằng đẳng thức sau dưới dạng bình phương của một hiệu

Áp dụng : Tính (x − 2y)2 Kết quả : x2− 4xy + 4y2

HS3 : − Phát biểu hằng đẳng thức hiệu hai bình phương

Áp dụng : Tính (x + 2) (x − 2) Kết quả : x 2 4

Hỏi : bằng cách nào để

tính nhanh kết quả ?

HS : đọc đề bài 16 tr 11

− 2 HS lên bảng giải

HS đứng tại chỗ trả lời

− 1 HS lên bảng giải

τ Bài tập 16 tr 11 :a) x2 + 2x + 1 = (x + 1)2

= 10000 + 200 + 1

= 10201b) 1992 = (200 − 1)2

= 40000 − 400 + 1

= 39601c) 47 53 = (50 − 3)(50+3)

= 502− 9 = 2500 − 9

= 2491

Trang 14

− GV nhận xét và sửa sai

HS : cả lớp đọc đề bài vàsuy nghĩ

HS khác nhận xét

HS : đọc đề bài

− Cả lớp suy nghĩ

− 1HS khá giỏi lên bảnggiải

HS khác nhận xét và bổsung

τ Bài 23 tr 12 :a) (a + b)2 = (a − b) + 4ab

Hỏi : Biểu thức có dạng

hằng đẳng thức nào ?

− Gọi 1 HS thực hiện

− Cho cả lớp nhận xét

HS ghi đề bài

− Trả lời : Dạng (A − B)2

(7x − 5) = (7.71 − 5)2 = 16

Trang 15

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

5’

HĐ 4 : Củng cố :

Gọi HS nhắc lại 3 hằng đẳng thức đã

học (phát biểu thành lời và nêu công

thức)

HS : Phát biểu thành lời và ghi côngthức 3 hằng đẳng thức đã học

2’ 4 Hướng dẫn học ở nhà :

− Ôn lại các hằng đẳng thức đã học

− Làm các bài tập : 19 ; 21 5tr 12 SGK

==============***=============

I MỤC TIÊU :

− Nắm được các hằng đẳng thức : (A + B)3 ; (A − B)3

− Biết vận dụng các hằng đẳng thức trên để giải bài tập

− Rèn luyện kỹ năng tính toán, cẩn thận

II CHUẨN BỊ :

Giáo viên : − Bài Soạn − SGK − SBT − Bảng phụ

Học sinh : − Học thuộc bài và làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 6’

HS1 : − Viết công thức bình phương của một tổng

− Tính : (a + b) (a + b)2 Đáp số :a3 + 3a2b + 3ab2 + b3

HS2 : − Viết công thức bình phương của một hiệu

− Tính : (a − b) (a − b)2 Đáp số : a3− 3a2b + 3ab2− b3

GV : Để có cách tính nhanh hơn, chúng ta học tiếp bài “hằng đẳng thức đáng nhớ”

3 Bài mới :

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

Tuần : 2

Tiết : 6

Ngày soạn: 23/08/2010 Ngày dạy: 16/08/2010

Trang 16

Hỏi : Hãy phát biểu hằng

đẳng thức trên bằng lời

− Dựa vào bài kiểm tra

HS trả lời

− HS ghi :(A + B)3 = A3 + 3A2B +3AB2 + B3

HS : phát biểu hằng đẳngthức bằng lời

tổng :

Với A ; B là hai biểu thứctùy ý, ta có :

(A+B)3=A3+3A2B+3AB2+B3

HĐ 2 : Áp dụng quy tắc :

GV cho HS áp dụng tính

a) (x + 1)3

b) (2x + y)3

− Gọi 1 HS đứng tại chỗ

nêu kết quả

GV nhận xét và sửa sai

HS : cả lớp làm vào bảngcon trong 1’

− 1HS đứng tại chỗ nêukết quả

τ Áp dụng :a) (x + 1)3

= x3 + 3x2 .1 + 3x 12 + 13

= x3 + 3x2 + 3x + 1b) (2x + y)3

GV yêu cầu so sánh kết

quả với bài kiểm tra HS2

− Tương tự với A ; B là

các biểu thức ta có :

(A + B)3 = ?

GV yêu cầu HS viết tiếp

để hoàn thành công thức

− Yêu cầu HS phát biểu

Trang 17

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

b) Tính (x − 2y)3

Hỏi : cho biết biểu thức

thứ nhất ? biểu thức thứ

hai

GV yêu cầu HS thể hiện

từng bước theo hằng đẳng

thức

GV treo bảng phụ

câu c : Khẳng định nào

Hỏi : Em có nhận xét gì

về quan hệ của (A − B)2

1 vài HS khác nhận xét

HS : trả lời miệng

a) Đúng vì A2 = (−A)2

b) Sai vì A3 = −(−A)3

c) Đúng vì x + 1 = 1 + xd) Sai vì x2− 1 = −(1 − x2)e) Sai vì (x − 3)2

= x2− 6x + 9

− Trả lời : (A − B)2 = (B − A)2

(A − B)3 = −(B − A)3

1) (A − B)2 = (B − A)22) (A − B)3 = − (B − A)3

GV cho cả lớp làm vào vở

− Gọi 1 HS lên bảng làm

− Yêu cầu HS hoạt động

− Cả lớp làm vào vở

− 1HS lên bảng làm

− 1 vài HS khác nhận xétvà bổ sung

− Cả lớp làm vào vở

1 HS lên bảng giải

− 1 vài HS nhận xét

HS : hoạt động theonhóm Nhóm trưởngchuẩn bị bảng nhóm

τ Bài tập 26 tr 14 :a) (2x2 + 3y)3

= (2x2)3 + 3 (2x2)2 3y+3.2x2 (3y)2 + (3y)3

= 8x6+36x4y+54x2y2+ 27y3

b) (21 x − 3)3

= (21x)3 − 3.( 12x)2 3 + 3.2

1x.32− 33

= 81x3− 49 x2 + 272 x − 27

τ Bài tập 29 tr 14 SGK :

(x 1) 3 (x + 1) 3 (y 1) 2

Trang 18

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

theo nhóm

− Gọi đại diện nhóm trình

Đại diện nhóm trình bàybài làm

4 Hướng dẫn học ở nhà :

− Ôn tập năm hằng đẳng thức đáng nhớ đã học, so sánh để ghi nhớ

− Làm bài tập 27 − 28 tr 14 SGK ; bài 16 tr 5 SBT

===============***=============

I MỤC TIÊU :

− HS nắm được các hằng đẳng thức : Tổng hai lập phương, hiệu hai lập phương

− Biết vận dụng các hằng đẳng thức trên vào giải toán

II CHUẨN BỊ :

Giáo viên : − Bài Soạn − SGK − Bảng phụ

Học sinh : − Học thuộc năm hằng đẳng thức đã biết

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 8’

HS1 : − Viết hằng đẳng thức : (A + B)3 ; (A − B)3

− Giải bài tập 28a tr 14

Trang 19

GV giới thiệu :

(A2 − AB + B2) quy ước

gọi là bình phương thiếu

của hai biểu thức

Hỏi : Em nào có thể phát

biểu bằng lời lập phương

của hai biểu thức

dạng tổng GV gọi 1 HS

lên bảng giải

GV cho HS làm bài tập

30a tr 16

Rút gọn biểu thức

(x+3)(x − 3x+9)(54+x3)

GV nhắc nhở HS phân

− Cả lớp đọc đề bài

− 1HS trình bày miệng(a + b) (a2− ab + b2)

= a3−a2b+ab2+a2b−ab2+ b3

= a3 + b3

− 1HS viết tiếp(A + B) (A2− AB + B2)

HS nghe GV giới thiệucách gọi của A2− AB + B2

− 1HS đứng tại chỗ phátbiểu

HS : Thực hiện

x3 + 8 = x3 + 23

= (x + 2) (x2− 2x + 4)

HS lên bảng trình bày

1HS lên bảng trình bàybài giải

HS làm bài tập dưới sựhướng dẫn của GV :

(x+3)(x − 3x+9)(54+x3)

= x3 + 33− 54 − x3

= x3 + 27 − 54 − x3

1 Tổng hai lập phương :

Với A, B là các biểu thứctùy ý, ta có :

A3+B3=(A+B)(A2−AB+B2)

τ Áp dụng :a) x3 + 8 = x3 + 23

= (x + 2) (x2− 2x + 4)

b) (x + 1) (x2− x + 1)

= x3 + 13 = x3 + 1

Trang 20

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

biệt (A + b)3 là lập phương

của một tổng với A3 + B3

là tổng hai lập phương

− Gọi 1 HS viết tiếp

GV Quy ước gọi

(A2 + AB + B2) là bình

phương thiếu của tổng hai

biểu thức

Hỏi : Em nào có thể phát

thành lời đẳng thức hiệu

hai lập phương của 2 biểu

GV gọi 1 HS nêu kết quả

b) Viết 8x3 − y3 dưới dạng

tích

Hỏi : 8x3 là bao nhiêu tất

cả lập phương

− Gọi 1HS lên bảng giải

c) GV treo bảng phụ ghi

kết quả của tích

(x + 2)(x2− 2x + 4)

Gọi 1 HS đánh dấu × vào

ô đúng của tích

GV cho HS làm bài tập 30

Cả lớp làm bài vào vở(a − b)(a2 + ab + b2)

= a3+a2b+ab2− a2b −ab2−b3

= a3− b3

− 1 HS lên bảng viết tiếp (A − B)(A2 + AB + B2)

HS : Phát biểu thành lời

HS : cả lớp làm vào vở

Trả lời : hằng đẳng thức

A3− B3

HS : Nêu kết quả

x3− 13 = x3− 1

Trả lời : Là (2x)3

HS : lên bảng giải dưới sựgợi ý của GV

− Cả lớp đọc đề bài trênbảng phụ và tính tích

(x + 2)(x2 − 2x + 4) ngoàinháp

1HS đánh dấu × vào bảng

2 Hiệu hai lập phương :

Với A, B là các biểu thứctùy ý tacó :

A3−B3= (A− B)(A2+AB+B2

τ Aùp dụng :a) (x − 1)(x2 + x + 1)

(x − 2) 3

Trang 21

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

(b) tr 16

Rút gọn :

(2x + y)(4x2− 2xy + y2) −

(2x − y)(4x2 + 2xy + y2)

Cả lớp làm bài

− 1HS lên bảng giải

= [(2x)3+y3]− [(2x)3− y3]

= 8x3 + y3− 8x3 + y3 = 2y3

6’ HĐ 3 : Củng cố :

− GV yêu cầu HS cả lớp viết vào bảng con

bày hằng đẳng thức đáng nhớ

− GV kiểm tra bảng con của 1số HS yếu

− HS cả lớp viết vào bảng con 7 hằngđẳng thức đã học

1’

4 Hướng dẫn học ở nhà :

− Học thuộc lòng và phát biểu thàn lời bảy hằng đẳng thức

− Làm các bài tập : 31 ; 33 ; 36 tr 16 − 17

==============***===============

LUYỆN TẬP

I MỤC TIÊU :

− Củng cố kiến thức về bảy hằng đẳng thức đáng nhớ

− HS biết vận dụng khá thành thạo các hằng đẳng thức đáng nhớ vào giải toán

− Hướng dẫn HS cách dùng hằng đẳng thức (A ± B)2 để xét giá trị của một số tamthức bậc hai

II CHUẨN BỊ :

-Giáo viên : − Bài Soạn − SGK − SBT − Bảng phụ

-Học sinh : − Học thuộc bảy hằng đẳng thức

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 8’

HS1 : − Chữa bài tập 30(a) tr 16 SGK

Giải : Rút gọn : (x + 3)(x2− 3x + 4) − (54 − x3) = x3− 33− 54 − x3 = −27

HS2 : − Các khẳng định sau đây đúng hay sai ?

Tuần : 3

Trang 22

Hỏi : Để chứng minh

a)a3+b3=(a+b)3−3ab(a+ b),

ta có thể dùng phương

1 HS lên bảng thực hiện

HS nhận xét và sửa sai

1HS lên bảng áp dụng vàtính

τ Bài 31 tr 16 SGK :Chứng minh rằng :a)a3+b3=(a+b)3−3ab(a+ b).Vế phải ta có

GV yêu cầu 2 HS lên

bảng làm bài

HS1 : a, c, e

HS2 : b, d, f

HS : cả lớp cùng làm 2HS lên bảng làm các HSkhác mở vở đối chiếu,nhận xét

τ Bài 33 tr 16 SGK :a) (2 + xy)2 = 4 + xy+x2y2

b)(5−3x)2 = 25 − 30x + 9x2

c) (5− x2)(5 + x2) = 25 − x4

d) (5x − 1)3

= 125x3− 75x2 + 15x + 1e) (2x − y)(4x2 + 2xy + y2)

= 8x3− y3

f) (x + 3)(x2− 3x + 9)

Trang 23

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

= x3 + 27

6’

τ Bài 34 tr 17 SGK :

GV yêu cầu HS chuẩn bị

bài khoảng 3 phút sau đó

mời 2 HS lên bảng làm

câu a, b

GV yêu cầu HS quan sát

kỹ biểu thức để phát hiện

1 HS lên bảng thực hiện

τ Bài 34 tr 17 SGK :a) (a + b)2− (a − b)2

= (a+b+a−b)(a + b −a + b)

= 2a 2b = 4a.bb) (a + b)3− (a − b)3− 2b3

Gọi đại diện nhóm trình

bày bài làm

GV kiểm tra, nhận xét và

sửa chỗ sai

HS hoạt động theo nhóm

− Nhóm 1, 2, 3 câu a

− Nhóm 4 ; 5 ; 6 câu bĐại diện nhóm trình bàybài làm

τ Bài 35 tr 17 SGK :a) 342 + 662 + 68 66

= 342 + 662 + 2 34 66

= (34+66)2 = 1002 = 10000b) 742+ 242− 48 74

− Gọi 2 HS lên bảng làm

− Gọi HS nhận xét và sửa

ta có : − (b − a)3 =

= − (b3− 3b2a +3ba2− a3)

= a3− 3a2b + 3ab2− b3

= (a − b)3 ( = vế phải)b) (−a − b)2 = ( a + b)2

ta có : (−a − b)2 =

= (−a)2− 2.(−a).b + b2

= a2 + 2ab + b2 =

= (a + b)2 (= vế phải)

Trang 24

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

4’

HĐ 2 : Củng cố :

GV yêu cầu HS phát biểu bằng lời và

viết lại hằng đẳng thức đáng nhớ

Nhắc lại phương pháp chứng minh một

đẳng thức

HS1 : 4 hằng đẳng thức đầu

HS2 : 3 hằng đẳng thức cuối

HS trả lời+ Biến đổi vế phải+ Hoặc biến đổi vế trái hoặc + Biến đổi cả hai vế

3’

4 Hướng dẫn học ở nhà :

− Làm các bài tập 32 ; 36 tr 17 SGK

− Bài tậpdành cho HS khá giỏi: 18 ; 19 ; 20 tr 5 SBT

Hướng dẫn : bài 18 : Đưa biểu thức về dạng bình phương của 1 tổng hay 1 hiệu

− HS hiểu thế nào là phân tích đa thức thành nhân tử

− Biết cách tìm nhân tử chung và đặt nhân tử chung

II CHUẨN BỊ :

Giáo viên :

− Bài Soạn − SGK − SBT − Bảng phụ

Học sinh :

− Học thuộc bài − SGK − SBT

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

Tuần : 3

Trang 25

2 Kiểm tra bài cũ : 5’ Tìm giá trị biểu thức

Hỏi : Em hãy viết 2x2− 4x

thành một tích của các đa

thức ?

GV trong ví dụ vừa rồi ta

viết 2x2 − 4x thành tích 2x

(x − 2), việc biến đổi đó

được gọi là phân tích đa

thức 2x2 − 4x thành nhân

tử

Hỏi : Thế nào là phân tích

đa thức thành nhân tử ?

GV phân tích đa thức

thành nhân tử còn gọi là

phân tích đa thức thành

thừa số và ví dụ trên còn

gọi là phân tích đa thức

thành nhân tử bằng

phương pháp đặt nhân tử

chung

Hỏi : Hãy cho biết nhân tử

chung ở ví dụ trên

GV cho HS làm tiếp ví dụ

2 tr 18 SGK

− GV gọi 1 HS lên bảng

làm bài, sau đó kiểm tra

bài của một số HS khác

− Cả lớp làm ví dụ 1

HS : viết :2x2− 4x = 2x x − 2x 2

= 2x (x − 2)

HS : nghe GV giới thiệu

− HS : trả lời khái niệmnhư SGK

− Một HS khác nhắc lại

Giải

2x2− 4x = 2x x − 2x 2 = 2x (x − 2)

τ Phân tích đa thức thànhnhân tử (hay thừa số) làbiến đổi đa thức đó thànhmột tích của những đathức

− Cách làm trên gọi làphân tích đa thức thànhnhân tử bằng phương phápđặt nhân tử chung

b) Ví dụ 2 :

Phân tích đa thức :15x3 − 5x2 + 10x thànhnhân tử ?

Giải

Trang 26

T

L Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

Hỏi : Nhân tử chung trong

ví dụ này là bao nhiêu ?

Hỏi : Hệ số của nhân tử

chung có quan hệ gì với

các hệ số nguyên dương

của các hạng tử 15, 5, 10

Hỏi : Lũy thừa bằng chữ

của nhân tử chung (x)

quan hệ như thế nào với

lũy thừa bằng chữ của các

hạng tử ?

− GV đưa ra cách tìm

nhân tủ chung với các đa

thức có hệ số nguyên

= 5x (3x2− x + 2)

−HS : 5x

−HS nhận xét : Hệ số củanhân tử chung chính làƯCLN của các hệ sốnguyên dương của các hệsố

− Trả lời : Phải là lũy thừacó mặt trong các hạng tửcủa đa thức, với số mũ làsố mũ nhỏ nhất của nótrong các hạng tử

15x3− 5x2 + 10x

= 5x 3x2− 5x x + 5x 2

= 5x (3x2− x + 2)

12’

HĐ 2 : Vận dụng, rèn

luyện kỹ năng :

− GV cho HS làm ?1

− GV hướng dẫn HS tìm

nhân tử chung của mỗi đa

thức, lưu ý đổi dấu ở câu c

− Sau đó GV yêu cầu HS

làm vào vở

− Gọi 3 HS lên bảng làm

Hỏi : Ở câu b, nếu dừng

lại ở kết quả :

(x − 2y)(5x2 − 15x) có

được không ?

− GV nhấn mạnh : Nhiều

khi để làm xuất hiện nhân

tử chung, ta cần đổi dấu

các hạng tử ; dùng tính

chất A = − (A)

GV một trong các lợi ích

của phân tích đa thức

thành nhân tử là giải bài

− HS : cả lớp làm bài

− HS nghe GV hướng dẫn

− HS : làm vào vở

− 3 HS lên bảng làm

HS1 : a ; HS2 : b ; HS3 : cTrả lời : Vì kết quả đóphân tích chưa triệt để còntiếp tục phân tích đượcbằng 5x (x − 3)

2 Áp dụng :

?1 Phân tích các đa thứcthành nhân tử

a) x2− x = x x − x 1 = x (x − 1)b) 5x2(x−2y) − 15x (x −2y)

= (x − 2y)(5x2− 15x)

= (x − 2y) 5x (x − 3)

= 5x (x − 2y)(x − 3)c) 3(x − y) − 5x(y − x)

= 3(x − y) + 5x(x − y)

= (x − y)(3 + 5x)

τ Chú ý : Nhiều khi đểlàm xuất hiện nhân tửchung, ta cần đổi dấu cáchạng tử

(Áp dụng t/c A = −(A)

Trang 27

Tích trên bằng 0 khi nào ?

HS : làm vào vở

− 1 HS lên bảng trình bày

Trả lời : Tích trên bằng 0khi 1 trong 2 thừa số bằng0

− GV chia lớp thành 2

− Nửa lớp làm câu b, d

− Nửa lớp làm câu d, e

− Gọi 2 HS lên bảng làm

τ Bài 40 (b) tr 19 SGK :

Hỏi : để tính nhanh giá trị

của biểu thức ta làm như

thế nào ?

−Yêu cầu HS làm vào vở

− HS : làm ở giấy nháp

− HS ghi kết quả vàobảng con

− 2 HS lên bảng làm

Trả lời : Ta nên phân tích

đa thức thành nhân tử rồithay giá trị x ; y

− HS : làm vào vở

τ Bài tập 39 tr 19 SGK :b) 52x2+ 5x3 + x2y

= x2(52+ 5x + y)c) 14x2y − 21xy2 + 28x2y

= 7xy(2x − 3y + 4xy)d) 52x(y − 1) − 52y(y − 1)

= 52 (y − 1)(x − y)e) 10x(x − y) − 8y(y − x)

= 10x(x − y) + 8y(x − y)

= 2(x − y)(5x + 4y)

τ Bài 40 (b) tr 19 SGK :b) x(x − 1) − y(1 − x)

4 Hướng dẫn học ở nhà :

− Xem lại các bài đã giải

− Làm các bài tập : 40(a) ; 41 ; 42 ; tr 19 SGK

− Xem trước bài § 7

===================***=================

Trang 28

………………

Trang 29

§ 6 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC

− Học thuộc bài − SGK − SBT

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 8’

HS1 : a) 5x (x − 2000) − x + 2000 = 0; b) x3− 13x = 0

5x(x − 2000) − (x − 2000) = 0 x(x2− 13) = 0 (x − 2000)(5x − 1) = 0 ⇒ x = 0 hoặc x2 = 13 ⇒ x = 0 hoặc x = 51 ⇒ x = 0 hoặc x = ± 13

HS2 : Viết tiếp vào vế phải để được các hằng đẳng thức

Trang 30

Hỏi : Dùng được phương

pháp đặt nhân tử chung

không ? Vì sao ?

− Hỏi : Đa thức có 3 hạng

tử em hãy nghĩ xem có

thể áp dụng hằng đẳng

thức nào để biến đổi ?

− GV yêu cầu HS thực

hiện phân tích

− GV giới thiệu cách làm

như trên gọi là phân tích

đa thức thành nhân tử

bằng phương pháp dùng

hằng đẳng thức

− Sau đó GV yêu cầu HS

tự suy nghĩ ví dụ b, và c

SGK

− GV hướng dẫn HS làm

bài ?1

a) x3 + 3x2 + 3x + 1

Hỏi : Đa thức này có 4

hạng tử em có thể áp

dụng hằng đẳng thức

nào ?

b) (x + y)2− 9x2

GV gợi ý :

(x+y)2−9x2 = (x+y)2− (3x)2

Vậy biến đổi tiếp như thế

− Cả lớp đọc đề bài vàsuy nghĩ

− Trả lời : Không dùngđược vì tất cả các hạng tửcủa đa thức không cónhân tử chung

Trả lời : Đa thức trên cóthể viết được dưới dạngbình phương của một hiệu

HS : x2− 4x + 4

= x2− 2.x.2 + 22 = (x − 2)2

− HS : nghe giới thiệu

− HS : suy nghĩ và lênbảng trình bày

− HS cả lớp quan sát đềbài

Trả lời : có thể dùng hằngđẳng thức lập phương củamột tổng

− HS cả lớp làm vào giấynháp

HS : biến đổi tiếp

1 Ví dụ :

Phân tích đa thức thànhnhân tử :

a) x2− 4x + 4b) x2− 2c) 1 − 8x3

Giải :a) x2− 4x + 4

= x2− 2x 2 + 22 = (x − 2)2

b) x2− 2 = x2− ( 2 )

= (x − 2 )(x + 2 )c) 1 − 8x3 = 13− (2x)3

= (1 − 2x) (1 +2x + 4x2)

τ Cách làm như trên gọi làphân tích đa thức thành nhân tử bằng phương phápdùng hằng đẳng thức

Trang 31

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

− HS làm vào bảng con

− 1HS lên bảng trình bày

(2n + 5)2− 25 chia hết cho

4 với mọi số nguyên

Hỏi : Để c/m đa thức chia

hết cho 4 với mọi số

nguyên n, cần làm thế nào

?

− Gọi HS lên bảng làm

− HS : cả lớp ghi đề vàovở

− Trả lời : cần biến đổi đathức thành một tích trongđó có thừa số là bội của 4

− 1HS lên bảng giải

2 Áp dụng :

Ví dụ : c/m rằng : (2n + 5)2− 25 Μ 4 với mọisố nguyên n

14’

HĐ 3 : Củng cố và luyện

tập :

τ Bài 43 tr 20 SGK :

− GV cho HS làm bài 43 ;

HS làm bài độc lập, rồi

lần lượg gọi HS lên bảng

trình bày

− GV gợi ý : HS nhận xét

đa thức có mấy hạng tử để

lựa chọn hằng đẳng thức

áp dụng cho phù hợp

− GV cho HS nhận xét bài

làm của bạn

− GV gọi đại diện mỗi

nhóm trình bày bài làm

− GV nhận xét và sửa sai

− HS : cả lớp cùng làmvào giấy nháp

− HS1 : câu a

− HS2 : câu b

− HS3 : câu c

− HS4 : câu d (hai HS lên một lượt)

− 1 vài HS nhận xét bàilàm của bạn

HS : cả lớp quan sát đềbài và sinh hoạt nhóm

− Nhóm 1 ; 2 ; 3 bài b

− Nhóm 3 ; 4 ; 5 bài c

− Đại diện nhóm lên trìnhbày bài làm trong bảngnhóm

τ Bài 43 tr 20 SGK :a) x2 = 6x + 9

τ Bài 44 b ; e tr 20 SGK :b) (a + b)3− (a − b)3

Trang 32

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

= (3 − x)3 2’ 4 Hướng dẫn học ở nhà :

− Ôn lại bài, chú ý vận dụng hằng đẳng thức cho phù hợp

− Làm bài tập : 44a, c, d ; 45 ; 46 tr 20 − 21 SGK

− Học thuộc bài − SGK − SBT

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 10’

HS1 : − Giải bài tập 44c (20) SGK

− Phân tích đa thức thành nhân tử : (a + b)3 + (a − b)3

Giải : (a + b)3 + (a − b)3 = a3 + 3a2b + 3ab2 + b3 + a3− 3a2b + 3ab2− b3 = 2a(a2 + 3b2)(GV có thể hướng dẫn thêm cách 2 dùng hằng đẳng thức tổng hai lập phương)

HS2 : − Giải bài 29 b tr 6 SBT : 872 + 732− 272− 132

Tuần : 4

Trang 33

− GV đưa ví dụ 1 lên bảng

: Phân tích đa thức thành

nhân tử

x2 − 3x + xy − 3y cho HS

làm thử

− GV gợi ý cho HS với ví

dụ trên thì có sử dụng

được hai phương pháp đã

học không ?

Hỏi : Trong 4 hạng tử

những hạng tử nào có

nhân tử chung ?

Hỏi : Hãy nhóm các hạng

tử có nhân tử chung đó và

đặt nhân tử chung cho

từng nhóm

Hỏi : Đến đây các em có

nhận xét gì ?

Hỏi : Hãy đặt nhân tử

chung của các nhóm

Hỏi : Em có thể nhóm các

hạng tử theo cách khác

được không ?

− GV lưu ý HS : Khi nhóm

các hạng tử mà đặt dấu

“−”đằng trước ngoặc thì

phải đổi dấu tất cả các

− Trả lời : x2 và − 3x ; xyvà 3y hoặc x2 và xy ; − 3xvà − 3y

HS : đặt tiếp (x − 3)(x + y)

− HS : thực hiện nhómtheo cách thứ hai

Trang 34

− GV yêu cầu HS tìm các

cách nhóm khác nhau để

phân tích được đa thức

thành nhân tử

− GV gọi HS1 lên trình

bày C1 và HS2 lên trình

bày C2

− GV cho HS nhận xét

Hỏi : Có thể nhóm đa thức

là : (2xy+3z)+(6y+xz)

được không ? Tại sao ?

− GV giới thiệu : Cách

làm như các ví dụ trên

được gọi là phân tích đa

thức thành nhân tử bằng

phương pháp nhóm hạng

− 1 vài HS nhận xét

− Trả lời : Không nhómđược vì nhóm như vậykhông phân tích được đathức thành nhân tử

b) Ví dụ 2 : Phân tích đa thức thànhnhân tử :

τ Đối với một đa thức cóthể có nhiều cách nhómnhững hạng tử thích hợp

6’

HĐ 2 : Áp dụng :

− GV cho HS làm bài ?1

− GV gọi HS nhận xét và

sửa sai

GV treo bảng phụ ghi đề

bài ?2 tr 22 :

Hỏi : Hãy nêu ý kiến của

1 HS lên bảng giải

− 1 vài HS nhận xét và bổsung

− Cả lớp quan sát đề bài ?

2 bảng phụ

− HS trả lời

Bài ?1 : Tính nhanh15.64+ 25.100 +36.15 +60.100

= (15.64 + 36.15) +(25.100 + 60.100)

= 15 (64 + 36) + 100 (25 +60)

Trang 35

L Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

mình về lời giải của các

bạn

− Gọi 2 HS lên bảng đồng

thời phân tích tiếp với

cách làm của bạn Thảo và

bạn Hà

− 2HS lên bảng phân tíchtiếp

− HS1 : Làm tiếp Thái

− HS2 : Làm tiếp Hà

vì còn có thể phân tíchtiếp được

− Nửa lớp làm bài 48(b)

− Nửa lớp làm bài 48 (c)

− GV kiểm tra bài làm

một số nhóm

− GV cho HS làm bài 49 tr

−HS : Hoạt động theonhóm

− Đại diện nhóm trình bàybài giải

− HS thực hiện tính nhanh

− 1 HS lên bảng giải

1 Phân tích đa thức thành nhân tử :

= 3(x2 + 2xy + y2− z2)

= 3 [(x + t)2− z2]

= 3 (x + y + z)(x− y − z)c) x2−2xy+y2−z2 + 2zt − t2

Kết quả : (x − y + z − t)(x − y − z+ t)

τ Bài 49 tr 22 :Kết quả : 70 100 = 7000

τ Bài 50 tr 22 :Tìm x biết : x(x − 2) + x − 2 = 0Kết quả : x = 2 ; x = −1

2’

4 Hướng dẫn học ở nhà :

− Khi phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử cần nhómthích hợp

− Làm bài tập 47 ; 48 (a) 49 (a) ; 50 (b) tr 22 − 23 SGK

Trang 36

………………

Trang 37

LUYEÄN TAÄPI) Mục tiêu:

II) Chuẩn bị của GV và HS :

- GV bảng phụ ghi bài tập

- HS: Ôn tập cách phân tích đa thức thành nhân tử

III)Tiến trình bài dạy:

1/ổn định tổ chức

2/ Tiến trình dạy học

Hoạt động 1 : Kiểm tra bài cú.

và b,d Dới lớp cùng làm

- áp dụng HĐT để biến đổi

- 2em khác lên bảng làm câug,h

- 2em khác lên bảng làm câu a,c và

b,d của bài 2

- PTĐTTNT bằng cách

ĐNTC, dùng HĐT và nhóm hạng tử

- 2em đồng thời lên bảng làm câu a,b

Trang 38

- 2em đồng thời lên bảng làm câu a,b.

Dới lớp cùng làm

- VP của đẳng thức bằng 0 tanên biến đổi VT thành tích các nhân tử

- HS hoạt động nhóm tổ viếtvào bảng nhóm

- Dại diện 2 nhóm giải thích cách làm

b, B = (8k+5)2-25 chia hết cho16

BAẩNG CAÙCH PHOÁI HễẽP NHIEÀU PHệễNG PHAÙP

Trang 39

− Bài Soạn − SGK − SBT − Bảng phụ

Học sinh :

− Học thuộc bài − SGK − SBT

− Làm bài tập đầy đủ

III TIẾN TRÌNH TIẾT DẠY :

1.Ổn định lớp : 1’ Kiểm diện

2 Kiểm tra bài cũ : 8’

HS1 : − Giải bài tập 47 (c) Phân tích đa thức thành nhân tử

3x2− 3xy − 5x + 5y Kết quả : (3x − 5)(x − y)

− Giải bài 50 (b) : Tìm x biết : 5x(x − 3) − x + 3 = 0

Kết quả : x = 3 ; x = 1/5

HS2 : Chữa bài tập 32 b tr 6 SBT

Phân tích đa thức thành nhân tử : a3− a2x − ay + xy Kết quả : (a − x) (a2− y)

Hỏi : Với bài toán trên em

có thể dùng phương pháp

nào để phân tích ?

Hỏi : Đến đây bài toán đã

dừng lại chưa ? Vì sao ?

Hỏi : Như vậy đã dùng

những phương pháp nào ?

GV đưa ra ví dụ 2

x2− 2xy + y2− 9

Hỏi : Em có thể dùng

phương pháp đặt nhân tử

− HS : ghi ví dụ vào vở

− HS suy nghĩ

Trả lời : Vì cả 3 hạng tửđều có 5x Nên dùngphương pháp đặt nhân tửchung

= 5x(x2 + 2xy + y2)Trả lời : Vì trong ngoặc làhằng đẳng thức bìnhphương của 1 tổng nêncòn phân tích tiếp được

− Trả lời : Đã dùngphương pháp đặt nhân tửchung, tiếp đến là phươngpháp hằng đẳng thức

Trả lời : Vì cả 4 hạng tửcủa đa thức không có

x2− 2xy + y2− 9

= (x2− 2xy + y2) − 9

Trang 40

TL Hoạt động của Giáo viên Hoạt động của Học sinh Kiến thức

chung không ? Vì sao ?

Hỏi : Em định dùng

phương pháp nào ? Nêu

cụ thể

− GV treo bảng phụ

Hỏi : Em hãy quan sát và

cho biết các cách nhóm

sau có được không ? Vì

GV chốt lại : khi phân tích

đa thức thành nhân tử nên

theo các bước

− Đặt nhân tử chung nếu

tất cả các hạng tử có nhân

tử chung

− Dùng hằng đẳng thức

nếu có

− Nhóm nhiều hạng tử,

nếu cần thiết phải đặt dấu

“ − “ trước ngoặc và đổi

dấu các hạng tử

− GV cho HS làm bài ?1

Phân tích đa thức thành

nhân tử :

2x3y − 2xy3− 4xy2− 2xy

− GV gọi 1HS lên bảng

giải

− Gọi HS khác nhận xét

nhân tử chung nên khôngdùng phương pháp đặtnhân tử chung

Trả lời : Ta có thể nhómcác hạng tử, rồi dùnghằng đẳng thức

− HS quan sát bảng phụtrả lời

− Không được vì :

= x (x − 2y)+(y − 3)(y + 3)thì không phân tích tiếpđược

− HS : Cũng không được

vì (x2− 9)+(y2− 2xy)

= (x − 3)(x + 3) +y(y − 2x)Không phân tích tiếp được

− HS : làm vào vở

1 HS : lên bảng làm

1 vài HS khác nhận xét

= (x − y)2− 9

= (x − y + 3) (x − y − 3)

Bài ?1 :2x3y − 2xy3− 4xy2− 2xy

Ngày đăng: 14/09/2015, 13:03

Xem thêm

HÌNH ẢNH LIÊN QUAN

Bảng giải - Toán đại HK1
Bảng gi ải (Trang 14)
Bảng làm bài - Toán đại HK1
Bảng l àm bài (Trang 22)
Bảng trình bày - Toán đại HK1
Bảng tr ình bày (Trang 43)
Bảng phụ - Toán đại HK1
Bảng ph ụ (Trang 53)
Bảng con hoặc vào vở - Toán đại HK1
Bảng con hoặc vào vở (Trang 62)
Bảng trình bày - Toán đại HK1
Bảng tr ình bày (Trang 65)
Bảng phụ) - Toán đại HK1
Bảng ph ụ) (Trang 77)
Bảng sửa bài tập 11 - Toán đại HK1
Bảng s ửa bài tập 11 (Trang 80)
Bảng   thực   hiện   chia   đa - Toán đại HK1
ng thực hiện chia đa (Trang 90)
Bảng giải - Toán đại HK1
Bảng gi ải (Trang 95)
Bảng   trình   bày   dưới   sự - Toán đại HK1
ng trình bày dưới sự (Trang 115)
Bảng làm - Toán đại HK1
Bảng l àm (Trang 117)
Bảng nhóm : c) ẹK : 16 − 24x + 9x 2  ≠ 0 - Toán đại HK1
Bảng nh óm : c) ẹK : 16 − 24x + 9x 2 ≠ 0 (Trang 119)
Bảng nhóm : - Toán đại HK1
Bảng nh óm : (Trang 131)
Bảng rút gọn P - Toán đại HK1
Bảng r út gọn P (Trang 132)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w