1. Trang chủ
  2. » Giáo án - Bài giảng

đề ôn thi lên lớp 10

40 502 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,61 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tỡm giỏ trị của m để phương trỡnh cú một nghiệm x1 = 2.Tỡm nghiệm x2... Biết vận tốc của ca nô lớn hơn vận tốc của thuyền 12km/h.. Tính vận tốc của mỗi ngời... Tính số dụng cụ mà mỗi xí

Trang 1

Ôn thi vào 10 - Năm Học :2008-2009 Ôn Thi vào THPT

Phần I: đại số

A- Lí thuyết

1 Căn bậc hai:

ĐN : Căn bậc hai của một số a không âm là số x sao cho x2=a

*a>0 : Có hai căn bậc hai là : a , a

3.So sánh các căn bậc hai số học :

Định lí : Với các số a và b không âm, ta có :

b a

3 2 5 (

) 2 3 )(

2 3 (

) 5 2

4 20

5

)

2 1 ) 3

1

)

2 2

x

c

x b x

1 2

A A

A A

nếu nếu

Bài 1: Tìm các giá trị của x để mỗi biểu thức sau có nghĩa :

x x

x D x

x C

x x B x

A

3 3 2

1

5 4 2 1

4

2

2 2

24 4 28 18 3 )

1 9 6 1

2 )

4 4 12 9 )

2 2

2

2 2

x x

x c

x x x

x b x

x a

*Bài 3 : Tìm giá trị nhỏ nhất của biểu thức :

1 2 1

1 42

Trang 2

¤n thi vµo 10 - N¨m Häc :2008-2009

Bµi 4 : Rót gän c¸c biÓu thøc sau :

6 2 7 6 2 7

6 12 )

2 1 1 2

7 2 8 7 2 8 ) 5 2 6 5 2 6 )

a c

b a

víi 1

a 2 a e)

-ki bÊt a víi 9 6a a 9 6a a d) 0 a víi 2a 64a

Bµi 5 : Ph©n tÝch c¸c ®a thøc thµnh nh©n tö:

6 6 3 ) 3 4 )

6 5 )

; 11 )

2 2

2 2

d x

x c

x x

b x

1 1 1 1 1 1

1 2

2 4

2 3

1 67

34

1 34

3 5

3 5

3 5

1 : 1 ( : ) 1 2

2 2 2 3

3 2 3

Bµi 5:Rót gän c¸c biÓu thøc sau

Gi¸o viªn : Lª Ng« Trung – Trêng THCS Phîng S¬n, Lôc Ng¹n 2

Trang 3

¤n thi vµo 10 - N¨m Häc :2008-2009

A= 9  4 5- 5 B= 23  8 7 - 7

C=

3 2

3 2

D= 3  5  3  5  2 E= 4  7  4  7  7 F= 6 , 5  12  6 , 5  12  2 6

G=

1 24 7

1 1

1 2

b a

víi a 0 ;b 0 ;ab g,

b a

b a b a

b a

b a ab b

a

b a

víi mäi a>0 ; b>0 ; ab

b a b a

ab b

víi mäi a>0 ; b>0 ; ab

a a

a a

1

1

a a

a

a a a

2

6 2

4 2 2 4 2

2 4

neux x

x neu x

x x

1 2

x

x

II Rót gän biÓu thøc h÷u tØ

Bµi 10.1: Cho biÓu thøc A=

8 2 4

2 2 2

x x

x

-8 2 4

2 2 2

x x

x

a,Rót gän A

b,TÝnh gÝa trÞ cña A t¹i x=3 ( KQ: A=2)

1

1 ( : ) 1 1

bTÝnh gÝa trÞ cña B t¹i x=4 2  5 ( KQ: B= 1  x = =2- 2)

Gi¸o viªn : Lª Ng« Trung – Trêng THCS Phîng S¬n, Lôc Ng¹n 3

Trang 4

Ôn thi vào 10 - Năm Học :2008-2009

Bài 10.3 C=

1 3 1

1 5 5

x x

với x 1 ;x  10

a,Rút gọn C KQ; :C=

1

2 1

x x

b,Tìm x để C<3 (đúng với mọi ; x 1 ;x  10)

Bài 10.4 D=

x

x x

x x

2 2

1

với mọi x 0 ;x 4)a,Rút gọn D

b,Tìm x để D=2

2

1 ( : ) 1

1 1 1

x

x x

x x

2 3 3 2

x x x

x

x x

a,Rút gọn G

b, Tìm x để G nhận giá trị nhỏ nhất Tìm giá trị đó

x x

x x

x

x x

1 2

3 9 3

bTính gía trị nguyên của x để J có giá trị nguyên ( x=0;4;9)

Bài Bài 10.12 K=

x

x x

x x

1 2 6 5

x

x x

1 1

2

a,Rút gọn M

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 4

Trang 5

Ôn thi vào 10 - Năm Học :2008-2009 b,Tính gía trị của M nếu x=28-6 3 ( M=

1

x x

x

= =

3 3 28 1 3 3   = )

c,C/m rằng M < 3 1 (xét hiệu và c/m hiệu <0) Bài 10.14 N =1+( 1 2 ) 1 2 1 1 2          x x x x x x x x x x x x a,Rút gọn N

b, C/m N > 3 2

c,Tìm x biết N= 6 1 6 

Bài 10.15 P= 1 ) 3 2 2 ( : ) 9 ) 3 ( 3 3 3 2          x x x x x x x x với mọi x 0 ;x  9) a,Rút gọn P

b,Tìm x để P<-1 (KQ: 1 3 ) 3 ( 3     x x <=> 0

3 ) 6 ( 4    x x .)

c,Tìm x để P có giá trị nhỏ nhất

Bài 10.16 Q= 2 1 1 2       x x x x x x x

a,Rút gọn Q

b,Biết x >1so sánh Q và / Q/

c,Tìm x đẻ Q=2

d,Tìm x đẻ Q có giá trị nhỏ nhất III Hàm số y=ax+b (a 0)– hệ ph hệ ph ơng trình Bài 1: Cho hàm số y=f(x)=(3-a) x+8 a, Với giá trị nào của a thì hàm số là hàm số bậc nhất

b,Với giá trị nào của a thì hàm số đồng biến trên R ?

c, Với giá trị nào của a thì hàm số nghịch biến trên R ? d,Nếu a=5 thì hàm số đồng biến hay nghịch biến ? e, Tính f(- 4); f(0); f(5) Bài 2: Cho hàm số y= k x+(k2-3) (d) a, Tìm k để đờng thẳng (d) đi qua gốc toạ độ b, Tìm k để đờng thẳng (d) song song với đờng thẳng có phơng trình y=-2x+10 Bài 3: Cho đờng thẳng (d) có phơng trình : y=k2x+(m+3),và đờng thẳng (d’) có phơng trình : y=(3k-2)x+(5-m) Xác định k và m để 2 đờng thẳng trùng nhau Bài 4:Cho 2 hàm số : y=(k-1) x+3 và y= (2k+1)x -4 a,Xác định k để 2 đờng thẳng cắt nhau b, Xác định k để 2 đờng thẳng song song với nhau c, Hai đờng thẳng có trùng nhau đợc không? Vì sao? Bài 5: Cho 3 đờng thẳng: y=kx-2 (d1) ; y=4x +3 (d2) ; y=(k-1)x+4 (d3) Tìm k để : a, (d1) song song với (d2) d, (d1) vuông góc với (d3)

b, (d1) song song với (d3) e, (d2) cắt (d3)

c, (d1) vuông góc với (d2)

Bài 6: Cho 2 hàm số : y=2 x+1 và y= 4-x Tìm toạ độ giao điểm của đồ thị 2 hàm số ?

Bài 7: Xác định hàm số y=a x+b biết

a, Đồ thị hàm số đi qua M(1;-1)và có hệ số góc là 2

b, Đồ thị hàm số đi qua A(4;3) và B(-2;6)

c, Đồ thị hàm số song song với đờng thẳng y=2-3x và cắt trục tung tại điểm có tung độ là 1 d,Xác định toạ độ giao điểm của đờng thẳng AB với trục hoành và trục tung

Bài 8:Cho 3 điểm: A(1;2) ; B(2;1) ; C(3 ;k)

a, Viết phơng trình đờng thẳng đi qua 2 điểm A và B

b, Tìm k để 3 điểm A;B;C thẳng hàng

Bài 9: Cho 3 đờng thẳng: y=2x-7 (d1) ; y=x +5 (d2) ; y=k x+5 (d3)

a,Tìm toạ độ giao điểm của (d1) và (d2)

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 5

Trang 6

Ôn thi vào 10 - Năm Học :2008-2009

b, Tìm k để 3 đờng thẳng đồng quy tại 1 điểm trong mặt phẳng toạ độ

Bài 10: a,Vẽ đồ thị của 3 hàm số sau trên cùng 1 hệ trục toạ độ : y=-x+5 (1) ; y=4x (2) ; y=

b1 Song song với trục hoành

b2 Song song với đờng thẳng có phơng trình x-2y=1

b3 Cắt trục hoành tại điểm A có hoành độ

x=2-2

3 c) C/m rằng đờng thẳng (1) luôn đi qua 1 điểm cố định khi m thay đổi

Bài 12: Cho hàm số y=(m-2)x+ n (1) (m;n là tham số )

a) Xác định m;n để đờng thẳng (1)đi qua 2 điểm : A(1;-2); B(3;-4)

b) Xác định m;n để đờng thẳng (1) Cắt trục hoành tại điểm C có hoành độ x=2+ 2 và Cắt trục tung tại điểm D có tung độ y=1- 2

c) Xác định m;n để đờng thẳng (1)

c1 Vuông góc vớiđờng thẳng có phơng trình x-2y=3

c2 Song song với đờng thẳng có phơng trình 3x+2y=1

c3 Trùng với đờng thẳng có phơng trình y-2x+3 =0

Bài 13: Cho hàm số y=(2m-1)x+ n -2 (1)

a) Xác định m;n để đờng thẳng (1) Cắt trục hoành tại điểm có hoành độ x= 3 và cắt trục tung tại điểm có tung độ y=- 2

b) Xác định m;n để đờng thẳng (1)đi qua gốc toạ độ và vuông góc với đờng thẳng có phơng trình 2x-5y=1

by ax

b ay x

Giải hệ khi a=3 ; b=-2 a) Tìm a;b để hệ có nghiệm là (x;y) = ( 2 ; 3 )

ay x y ax

Giải hệ khi a= 3  1 a) C/m rằng hệ luôn có nghiệm với mọi a

b) Tìm a để hệ có nghiệm duy nhất (x;y) sao cho x+y=<0

d)Tìm a để hệ có nghiệm duy nhất (x;y) sao cho x<0; y<0

e)Tìm a để hệ có nghiệm duy nhất (x;y) sao cho x>0; y>0

2

a y x

a y ax

a)Giải hệ khi a=-2

b)Tìm a để hệ có nghiệm duy nhất (x;y) sao cho x-y=1

1 2

y mx my x

a) Giải và biện luận nghiệm của hệ theo tham số m

b) Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) sao cho x; y là các số nguyên

KQ:( Với m  2 hệ có ng duy nhất: x=y=

my x

m y

mx

a) Giải và biện luận nghiệm của hệ theo tham số m

b)Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) sao cho x; y là các số nguyên dơng

KQ: (m  2 hệ có ng : x=

2

5

; 2

m

;

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 6

Trang 7

10 ) 2 (

1 3 )

1 (

m y x

m my

x m

a)Giải và biện luận nghiệm của hệ theo tham số m

b)Tìm tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x;y) mà S=x 2 +y 2 đạt giátrị nhỏ nhất (min S=8 khi m=1)

1 (

2

m y mx

m my

x m

y mx my x

a)Giải hệ khi a=2 b)Tìm m để hệ có nghiệm duy nhất (x;y) sao cho x>0; y<0

c)Tìm các số nguyên m để hệ có nghiệm duy nhất (x;y) sao cho x; y là các số dơng

KQ: ( hệ có ng vơi mọi m : x=

2

1 2

; 2

4

2 2

5

2 2

1

y x y

x

y x y

8 4

3

y x

y x

2

3 2 4

2

3

y x

y x

y x

y

x x

y

(đk 0

1 2

2 5

y

x

x

y y

1

(t>0) Khi đó

t y

1

1 2

y x

3 1

3 1

2 2

y x

y x

y x

y x

y xy

x

y xy

t u t u

cộng từng vế và giải đợc u;t c) 

2

x y

y x xy

( từ (1) => xy-(x+y)=17 ta có hệ mới rồi đặt -(x+y)=u; xy=t

2

2

x y

x y y x

y x

m y

x

m xy

2 2 1 2

1 )

m xy

y x

thì xảy ra 2 hệ rồi giải )

y x y

y

y y k

y x x

2 2 ) 1 (

4 2 2

4 8 4 ) 4 2 (

2 2

2 2

Tìm m để hệ có nghiệm duy nhất Tìm nghiệm đó m=- 2 ; m= 2

V Sự tơng giao của đồ thị 2 hàm số : y=ax 2 và y=a x+b

Bài 1: Cho Parabol (P): y=

2

1

x2 và đờng thẳng (d) có phơng trình : y=2x-2 Chứng tỏ rằng đờng thẳng (d) và Parabol (P) có điểm chung duy nhất.Xác định toạ độ điểm chung đó

Bài 2: Cho Parabol (P): y=

4

1

 x2 và đờng thẳng (d) có phơng trình : y=x+ma) Tìm m để đờng thẳng (d) và Parabol (P) có điểm chung duy nhất

b) Tìm m để đờng thẳng (d) và Parabol (P) cắt nhau tại 2 điểm phân biệt

c) Tìm m để đờng thẳng (d) và Parabol (P) khôngcó điểm chung

Bài 3: Cho Parabol (P): y=x2 và đờng thẳng (d) có phơng trình : y=ax+b

Tìm a và b để đờng thẳng (d) và Parabol (P) tiếp xúc nhau tại điểm A(1;1)

Bài 4: Cho Parabol (P): y=

4

1

x2 Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 7

Trang 8

Ôn thi vào 10 - Năm Học :2008-2009

a) Viết phơng trình đờng thẳng (d) có hệ số góc là k và đi qua M(1,5; -1)

b) Tìm k để đờng thẳng (d) và Parabol (P) tiếp xúc nhau

c) Tìm k để đờng thẳng (d) và Parabol (P) cắt nhau tại 2 điểm phân biệt

Bài 5; Cho Parabol (P): y=ax2

a)Tìm a biết rằng (P) đi qua A(2;-1) và vẽ (P) với a vừa tìm đợc

b) Điểm B có hoành độ là 4 thuộc (P) (ở câu a) hãy viết phơng trình đờng thẳng AB

c) Viết phơng trình đờng thẳng tiếp xúc Parabol (P) (ở câu a) và song song với AB

Bài 6: Cho Parabol (P): y=

2

1

x2 và điểm N(m;0) và I(0;2) với m 0 Vẽ (P)a)Viết phơng trình đờng thẳng (d) đi qua 2 điểm N; I

b)C/m rằng (d)và (P) luôn cắt nhau tại 2 diểm phân biệt A và B với mọi m 0

c) Gọi H;K là hình chiếu của A và B lên trục hoành c/m rằng tam giác HIK vuông tại I

Bài 7: Cho Parabol (P): y=x2

a) Gọi A và B là 2 điểm thuộc (P) lần lợt có hoành độ là -1 và 2.C/m OAB vuông tại A b) Viết phơng trình đờng thẳng (d1) // AB và tiếp xúc với (P)

c) Cho đờng thẳng (d2) : y=mx+1 (với m là tham số )

+C/m rằng đờng thẳng (d2) luôn đi qua 1 điểm cố định với mọi m

+Tìm m sao cho đờng thẳng (d2)cắt Parabol tại 2 điểm phân biệt có hoành độ là x1 và

x2 thoả mãn 2

2

2 1

1 1

x

Bài 8:Cho Parabol (P): y=(2m-1)x2

a)Tìm m để Parabol (P)đi qua A(2;-2)

b) Viết phơng trình đờng thẳng tiếp xúc Parabol (P) ở câu a và đi qua B(-1;1)

c) Viết phơng trình đờng thẳng đi qua gốc toạ độ và đi qua điểm C thuộc (P)ở câu a và

có tung độ là

16

1

d) Tìm trên (P) các điểm có khoảng cách đến gốc toạ độ bằng 1

Bài 9: : Cho Parabol (P): y=x2 và đờng thẳng (d) có phơng trình : y=2x+m

a)Tìm m để (d) và Parabol (P) tiếp xúc nhau Xác định toạ độ điểm chung đó

b) Tìm m để (d) và (P) cắt nhau tại 2 điểm ,một điểm có hoành độ x=-1.Tìm điểm còn lại c)Giả sử đờng thẳng cắt Parabol tại 2 điểm A và B Tìm tập hợp trung điểm I của AB

Bài 10: Bài thi năm 05-06 và 06-07

VI Giải Phơng trình Bài 1: Giải các phơng trình sau

x x

2 2

Bài 2: Giải các phơng trình sau ( có thể dùng phơng pháp đặt ẩn phụ)

1) x4 –t-6=0 =>ux2-6=0

2)

1

1 1

b a

Trang 9

Ôn thi vào 10 - Năm Học :2008-2009

9) 0

2 4 2 1 4 2 2 2 2        x x x x x x MTC: x(x-2)(x+2) => ng x=3 lu ý ĐKXĐ

10) (x+ ) 2 2 1 +6x +11=0 Tách 11= 2 6 +8 rồi Đặt x + 2 1 =t Bài 3; Giải phơng trình 1) 1 2 2 1    x x đk ; dùng phơng pháp đặt ẩn phụ hoặc bình phơng 2 vế

2) x-4= x 2

3) 1  x 2 x  1 4) 1  x  4 x  3

5) x 1  1 x đk ; dùng phơng pháp đặt ẩn phụ hoặc bình phơng 2 vế

6) x-1= x 1

7) 3x-4 x 1  18

8) x- x 12  14

9) 2 3 1 1 1 1       x x x x đặt ẩn phụ ta có pt: t - t 1 = 2 3 (đk t>0 ; x>1 hoặc x<-1) 10) 1  x 2 x  1

11) 2 4 2    x x 12 3x2  12x 16  y2  4y 13  5 (ta có 3 2 12 16 3 ( 2 ) 2 4 4       x x x Nên 3 2 12 16 2    x x ; 2 4 13 3    y y 10) x 3  4 x 1  x 8  6 x 1  5 11) 2 2 5 2 2 1      x x x x đặt ẩn phụ x2  2x 5 t ( t0) 12) 3x2 +2x=1-x+2 x 2 x đặt x 2 x =t ( t0)

VII Phơng trình bậc cao (Dành cho lớp 9A1) Phơng trình a x 3 +bx 2 +cx+d=0 (1) (a0) -Biến đổi vế trái về dạng tích bậc nhất với bậc hai để giải -Nếu a+b+c+d=0 thì (1) sẽ có 1 nghiệm x=1 - Nếu a-b+c-d=0 thì (1) sẽ có 1 nghiệm x=-1 Khi đó ta đẽ dàng Biến đổi vế trái về dạng tích -Nếu (1) có các hệ số nguyên , nếu có nghiệm nguyên thì nghiệm nguyên đó là ớc của hạng tử tự do , giả sử 3 nghiệm là x 1 ;x 2 ;x 3 thì x 1 +x 2 +x 3 =-b/a x 1 x 2 x 3 =-d/a x 1 x 2 +x 1 x 3 + x 2 x 3 =c/a Bài 4.1: a) Giải phơng trình 2x3+7x2+7x+2=0 a-b+c-d=0 thì (1) sẽ có 1nghiệm x=-1 Khi đó ta đẽ dàng Biến đổi vế trái về dạng tích b) Giải phơng trình x3+7x2-56 x+48=0 a+b+c+d=0 thì (1) sẽ có 1nghiệm x=1 d) Giải phơng trình 2x3+5x2+6x+3=0 e) Giải phơng trình sau : x3+ 4x2 -29+24 =0 (1) <=> (x-1 )( x2+5x-24 )=0 Bài 4.2 Giải phơng trình sau 4x 4 –t-6=0 =>u 109x2+ 225 =0 (1) Bài 4.3 phơng trình hệ số đối xứng bậc 4 : a x 4 + bx 3 + cx 2 + dx +e =0 ( x là ẩn , a, b, c, d, e là các hệ số ; a 0 ) (Đặc điểm : vế trái các hệ số của các số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau ) ph ơng pháp giải gồm 4 b ớc

-Nhận xét x=0 không phải là nghiệm của (1) ta chia cả hai vế (1) cho x 2 (đk x 0) rồi nhóm các số hạng cách đều hai số hạng đầu và cuối thành từng nhóm ta đợc phơng trình mới -Đặt ẩn phụ : (x+ 1) x =t (3) => x 2 + 12 x =t 2 -2 ta đợc phơng trình ẩn t -giải phơng trình đó ta đợc t = … - thay các giá trị của t vào (3) để tìm x và trả lời nghiệm (1) Giải phơng trình sau : 10x 4 - 27x 3 - 110x 2 -27x +10=0 (1)

Ta nhận thấy x=0 không phải là nghiệm của (1)

chia cả hai vế (1) cho x2 (đk x 0) ta đợc pt <=>10x2 -27x –t-6=0 =>u 110 -27 102

x

x  = 0

Nhóm các số hạng cách đều hai số hạng đầu và cuối thành từng nhóm ta đợc PT

10( x2 +

)

1 ( )

1

x   ) -110 =0 (2)

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 9

Trang 10

5

; t 2=

5 26

1

; 2

; 2 1

Bài 4.4 Phơng trình hồi quy dạng tổng quát : a x 4 + bx 3 + cx 2 + dx +e =0 (1)

Trong đó x là ẩn , a, b, c, d, e là các hệ số ; a 0 e0) và ( )2

b

d a

e

 ; phơng tình hệ số đối xứng bậc 4 chỉ là 1 trờng hợp đặc biệt của phơng trình hồi quy

d

 = 0 (2) Nhóm hợp lí a (x 2 + 2)  (  ) c 0

bx

d x b ax

d

 do (d/b) 2 =c/a nên x 2 + c/ a x 2 =t 2 -2 d/b

Khi đó ta có phơng trình a (t 2 - 2

b

d

) bt +c =0

Ta đợc phơnmg trình (3) trung gian nh sau : at 2 + bt +c=0 (3)

-Giải (3) ta đợc nghiệm của phơng trình ban đầu

Giải phơng trình : x 4 -4x 3 -9x 2 +8x+4=0 (1)

Nhận xét 4/1= ) 2

4

8 (

 ; Nên phơng trình (1) là phơng trình hồi quy

 x=0 không phải là nghiệm của (1)

 Do đó chia cả hai vế phơng trình cho x2 (x 0) ta đợc

nhận xét : tơng tự nh giải phơng trình bậc 4 hệ số đối xứng , chỉ khác bớc đặt ẩn phụ

Đặt x+bx

m

m y x b

2 2

2

Bài 4.5 Phơng trình dạng : (x+a ) ( x+b ) (x+c) (x+d )=m (Trong đó a+d=b+c)

cách giải : Nhóm ( x+a) với (x+d) ; (x+b) với (x+c) rồi triển khai các tích đó

y2 +8y +15 =0 nghiệm y1=-3 ; y2=-5

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 10

Trang 11

Ôn thi vào 10 - Năm Học :2008-2009 Thay vào (3) ta đợc 2 phơng trình

1/x2 +8x +7 = -3  x2+ 8x +10=0 có nghiệm x1,2 = -4 6

2/ x2 +8x +7 = -5  x2 +8x +12 = 0 có nghiệm x3=-2; x4 =-6

Vậy tập nghiệm của phơng trình (1) là S = 2 ;  6 ;  4  6

Bài 4.6:Phơng trình dạng; (x+a) 4 +(x+b) 4 = c (1) (Trong đó x là ẩn số ;a, b, c là các hệ số )

áp dụng Giải phơng trình sau : (x+3) 4 +(x-1) 4 =626

Ngoài nghiệm x=-1 , để tìm nghiệm còn lại ta đi giải phơng trình

2x4+x3 -6x2+x+2 =0(2) là phơng trình đối xứng (bậc 4) đã biết cách giải

Giải (2) ta đợc x1 =x2=1 ; x3 =-2 ;x4=-0,5

Vậy phơng trình đã cho có nghiệm là x1 =x2=1 ; x3 =-2 ;x4=-0,5 ;x5=-1

Bài tập VN : Giải các phơng trình sau

*Nếu tồn tại 2 số u và v sao cho S= u + v = và P= u.v thì u và v là 2 ng p/t đk:s 2 -4p>0

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 11

(1)

X2 - S X + P=0

Trang 12

Ôn thi vào 10 - Năm Học :2008-2009

*Dấu của nghiệm:

1 Phơng trình (1) có nghiệm/ kép  (a 0) ;  =0 2.Phơng trình (1) có 2 ng p/b  (a 0);  >0

3 Phơng trình (1) có 2 ng trái dấu  a.c<0

4.Phơng trình (1) có 2 nghiệm đối nhau:

*

0

*

a a

0

; 0

S P a

GIảI và biện luân PHơng TRình BẬC HAI ( chứa tham số) Loại toán suy luậN

Tìm điều kiện tổng quát để phơng trình: ax 2 +bx+c = 0 (a  0) có:

Bài 1: Giải phơng trình (giải và biện luận): x2- 2x+k = 0 ( tham số k)

Bài 2: Cho phơng trình (m-1)x2 + 2x - 3 = 0 (1) (tham số m)

a) Tìm m để (1) có nghiệm b) Tìm m để (1) có nghiệm duy nhất? tìm nghiệm duy nhất đó?

c) Tìm m để (1) có 1 nghiệm bằng 2? khi đó hãy tìm nghiệm còn lại(nếu có)?

Giải a) + Nếu m-1 = 0  m = 1 thì (1) có dạng 2x - 3 = 0  x =

2

3

(là nghiệm) + Nếu m  1 Khi đó (1) là phơng trình bậc hai có: ’=12- (-3)(m-1) = 3m-2 (1) có nghiệm 

2

3

(là nghiệm) + Nếu m 1 Khi đó (1) là phơng trình bậc hai có: ’ = 1- (-3)(m-1) = 3m-2 (1) có nghiệm duy nhất  ’ = 3m-2 = 0  m = 32 (thoả mãn m  1) Khi đó x = = 3

+Vậy với m = 1 thì phơng trình có nghiệm duy nhất x =

c) Do phơng trình có nghiệm x1 = 2 nên ta có: (m-1)22 + 2.2 - 3 = 0  4m –t-6=0 =>u 3 = 0  m =

4 3

Khi đó (1) là phơng trình bậc hai (do m -1 =

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 12

1 Có nghiệm (có hai nghiệm)    0

5 Hai nghiệm cùng dấu   0 và P > 0

6 Hai nghiệm trái dấu   > 0 và P < 0  a.c

Trang 13

Ôn thi vào 10 - Năm Học :2008-2009

Bài 3: Cho phơng trình: x2 -2(m-1)x –t-6=0 =>u 3 –t-6=0 =>u m = 0 ( ẩn số x)

a) Chứng tỏ rằng phơng trình có nghiệm x1, x2 với mọi m b) Tìm m để phơng trình có hainghiệm trái dấu

c) Tìm m để phơng trình có hai nghiệm cùng âm

d) Tìm m sao cho nghiệm số x1, x2 của phơng trthoả mãn x1 +x2  10

e) Tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m f) Hãy biểu thị x1 qua x2

Giảia) Ta có: ’ = (m-1)2 –t-6=0 =>u (–t-6=0 =>u 3 –t-6=0 =>u m ) =

4

15 2

 Phơng trình luôn có hai nghiệm phân biệt Hay phơng trình luôn có hai nghiệm (đpcm)b) Ph trình có 2 nghiệm trái dấu  a.c < 0  –t-6=0 =>u 3 –t-6=0 =>u m < 0  m > -3

d) Theo ý a) ta có ph tr luôn có hai nghiệm Theo định lí Viet ta có: S = x1 + x2 = 2(m-1) và P = x1.x2 = - (m+3)

Khi đó A=x1 +x22 = (x1 + x2)2 - 2x1x2 =4(m-1)2+2(m+3) = 4m2 –t-6=0 =>u 6m + 10

Theo bài A  10  4m2 –t-6=0 =>u 6m  0  2m(2m-3)  0  

m m m m m

Vậy m 

2

3

hoặc m  0e) Theo ý a) ta có phơng trình luôn có hai nghiệm

2 2 ) 3 (

) 1 ( 2

2 1 2 1 2

1 2 1

m x x m x x m

x x m x x

 x1 + x2+2x1x2 = - 8 không phụ thuộc m

Bài tập

Bài 1: Cho ph.t: x2 – 2mx + m + 2 = 0 Tỡm giỏ trị của m để phương trỡnh cú một nghiệm x1 = 2.Tỡm nghiệm x2

Bài 2: Cho phương trỡnh x2 + 2(m + 1)x + m2 = 0 (1)

a) Tỡm cỏc giỏ trị của m để phương trỡnh (1) cú hai nghiệm phõn biệt

b) Tỡm cỏc giỏ trị của m để phương trỡnh (1) cú 2 nghiệm phõn biệt và trong 2 nghiệm đú cú 1nghiệm bằng −2

HD: a) PT (1) cú hai nghiệm phõn biệt  m 1

HD: Đưa cỏc biểu thức về dạng x1 + x2 và x1x2 rồi sử dụng hệ thức Viột

Bài 4: Cho phương trỡnh (m + 1)x2 − 2(m − 1)x + m − 3 = 0 (1)

a) Chứng minh rằng m ≠ −1 phương trỡnh (1) luụn cú hai nghiệm phõn biệt

b) Tỡm giỏ trị của m để phương trỡnh cú hai nghiệm cựng dấu

HD: a) Chứng minh ' > 0 b) Phương trỡnh (1) cú hai nghiệm cựng dấu  m < −1 hoặc

m > 3

Bài 5: Cho phương trỡnh x2 − 2(m + 1)x + m − 4 = 0 (1)

a) Giải phương trỡnh (1) khi m = 1

b) Chứng minh rằng phương trỡnh (1) luụn cú nghiệm với mọi giỏ trị của m

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 13

c) Theo ý a) ta có phơng trình luôn có hai nghiệm

Khi đó theo định lí Viet ta có: S = x1 + x2 = 2(m-1) và P = x1.x2 = - (m+3)

Khi đó phơng trình có hai nghiệm âm  S < 0 và P > 0 3

3 1 0 ) 3 ( 0 ) 1 ( 2

m

Vậy m < -3

Trang 14

Ôn thi vào 10 - Năm Học :2008-2009 c) gọi x1, x2 là 2 nghiệm của phương trỡnh (1) Chứng minh A = x1(1 − x2) + x2(1 − x1) khụng phụthuộc vào giỏ trị của m

HD: a) Khi m = 1: PT cú 2 nghiệm x   2 2 7 ;b) A = 2(m + 1) − 2(m − 4) = 10  A khụng phụthuộc vào m

Bài 6: Gọi x1, x2 là cỏc nghiệm của phương trỡnh x 2 − 2(m − 1)x + m − 3 = 0

a) Khụng giải phương trỡnh hóy tớnh giỏ trị của biểu thức P = (x1) 2 + (x2)2 theo m b) Tỡm m

Bài 7: Cho phương trỡnh x2 − 6x + m = 0 (m là tham số) (1)

a) Giải phương trỡnh (1) với m = 5

b) Tỡm giỏ trị của m để phương trỡnh (1) cú 2 nghiệm phõn biệt x1 và x2 thỏa món 3x1 + 2x2 = 20 HD: a) Với m = 5  x1 = 1, x2 = 5 b) Đỏp số: m = −16 (x1 = 8, x2 = −2)

Bài 8: Cho phương trỡnh x2 − 4x + k = 0

a) Giải phương trỡnh với k = 3 Tỡm tất cả cỏc số nguyờn dương k để phương trỡnh cú hai nghiệmphõn biệt

HD: a) Với m = 3: x1 = 1, x2 = 3 b) ' = 4 − k > 0  k < 4 ĐS: k  {1 ; 2 ; 3}

Bài 9: Cho phương trỡnh : x2 − (m + 5)x − m + 6 = 0 (1)

a) Giải phương trỡnh với m = 1 b) Tỡm cỏc giỏ trị của m để phương trỡnh (1) cú một

nghiệm x = −2

HD: a) ĐS: x1 = 1, x2 = 5 b) ĐS: m = − 20

Bài 10: Cho phương trỡnh: (m − 1)x2 + 2mx + m − 2 = 0 (*)

1) Giải phương trỡnh (*) khi m = 1 2) Tỡm tất cả cỏc giỏ trị của m để phương trỡnh (*) cú hai nghiệm phõn biệt

b) Tìm m để phơng trình (1) có 1 nghiệm là 1 Khi đó tìm nghiệm còn lại (thay x=1

Bài 3: Cho phơng trình x 2 +(2m+1) x +m 2 +3m =0 (1) ( m là tham số)

Tìm m để phơng trình (1) có 2 nghiệm mà tích 2 nghiệm bằng 4 Tìm 2 nghiệm đó

b) Chứng minh rằng phơng trình (1) có 2 nghiệm phân biệt với mọi m

c) Tìm m để phơng trình (1) có 2 nghiệm trái dấu

d) Chứng minh rằng biểu thức M=x1(1-x2)+(1-x1) x2 không phụ thuộc vào m

Bài 7: Cho phơng trình x 2 - (m- 1)x –t-6=0 =>u m 2 +m-2 =0 (1) ( m là tham số)

a) Giải phơng trình khi m=-1

b) Chứng minh rằng phơng trình (1) có 2 nghiệm trái dấu với mọi m

c) Tìm m để phơng trình (1) có 2 nghiệm sao cho S=x12 +x2 đạt giá trị nhỏ nhất

Bài 8: Cho phơng trình x 2 - (m +2)x +m+1 =0 (1) ( m là tham số)

a)Tìm m để phơng trình (1) có 2 nghiệm trái dấu

b) Tìm m để phơng trình (1) có 2 nghiệm đối nhau

Bài 9: Cho phơng trình x 2 - (m +1)x +m =0 (1) ( m là tham số)

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 14

Trang 15

Ôn thi vào 10 - Năm Học :2008-2009

a) Chứng minh rằng phơng trình (1) có nghiệm với mọi m

b) Giả sử (1) có 2 nghiệm x1;x2 tính S=x12 +x2 theo m

c) Tìm m để phơng trình (1) có 2 nghiệm sao cho x12 +x2 =5

Bài 20: Cho phơng trình x 2–t-6=0 =>u 2mx +2m-1 =0 (1) ( m là tham số)

a) Chứng tỏ rằng phơng trình (1) có nghiệm x1;x2 với mọi m

b) Gọi A=2(x12 +x2 )-5 x1.x2 ; b1) c/m rằng A=8m2-18m +9 ; b2)Tìm m sao cho A=27

c) Tìm m để phơng trình (1) có nghiệm này bằng 2 lần nghiệm kia

Bài 21: Cho phơng trình 2x 2–t-6=0 =>u (2m+1)x +m 2 -9m +39 =0 (1) ( m là tham số)

a)Tìm m để phơng trình (1) có 2 nghiệm phân biệt

b)Tìm m để phơng trình (1) có nghiệm này bằng 2 lần nghiệm kia Tìm các nghiệm đó

Bài 22: Cho phơng trình (m-1)x 2 +2(m-1)x -m =0 (1) ( m là tham số)

a) Tìm m để phơng trình (1) có nghiệm kép Tìm nghiệm kép đó

b) Tìm m để phơng trình có 2 nghiệm đều âm

Bài 13: Cho phơng trình x 2 - 2(m-1)x -3 -m =0 (1) ( m là tham số)

a)Chứng tỏ rằng phơng trình (1) có nghiệm với mọi m

b) Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho x12 +x2  10

c) Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho E=x12 + x2 đạt GTNN

Bài 14: Cho phơng trình x2 –t-6=0 =>u(2m+1)x +m2+m -6 =0 (1) ( m là tham số)

a) Tìm m để phơng trình (1) có 2 nghiệm đều âm

b) Tìm m để phơng trình (1) có 2 nghiệm sao cho / x13 - x2 / =50

a) (1) có 2 nghiệm đều âm t/m:  =25  0 với  m ; x 1 x 2 =(m-2)(m+3) >0 ; x 1 +x 2 =2m+1< 0 Kq:m<-3b tính x 1 =m-2 ;x 2 =m+3 theo công thức ng =>/ x 13 - x 2 / =50 <=> (m 2 ) 3  (m 3 ) 3 =50=>m=

2

5

1 

Bài 15: Cho phơng trình x 2 -6x +m =0 (1) ( m là tham số)

a)Tìm m để (1) có 2 nghiệm phân biệt

b)Tìm m để (1) có 2 nghiệm sao cho x13 + x2 =72

(Với   0 <=> m  9 ta có x 13 + x 2 =72 < => (x 1 + x 2 ) 3 -3x 1 x 2 (x 1 + x 2 )<=>6 3 -3.m.6=72 =>m=8(t/m)

Bài 16: Cho phơng trình x 2 –t-6=0 =>u(m-1)x –t-6=0 =>um 2 +m-2=0 (1) ( m là tham số)

a)Chứng minh rằng phơng trình (1) có 2 nghiệm trái dấu với mọi m

b)Tìm m để phơng trình (1) có 2 nghiệm sao cho E=x12 + x2 đạt giá trị nhỏ nhất

Bài 17: Cho phơng trình x 2–t-6=0 =>u2(m+1)x +2m+10 =0 (1) ( m là tham số)

Giả sử (1) có 2 nghiệm phân biệt là x1;x2 Tìm m để phơng trình (1) có 2 nghiệm sao cho E=x12 + x2 +10 x1x2 đạt giá trị nhỏ nhất Tính giá trị nhỏ nhất đó

Bài 18: Cho phơng trình x 2–t-6=0 =>u(m-1)x +1=0 (1) ( m là tham số)

Giả sử (1) có 2 nghiệm phân biệt là x1;x2 Tìm m để phơng trình (1) có 2 nghiệm sao

cho M=3x12 + 3x2 +5 x1x2 đạt giá trị nhỏ nhất Tìm nghiệm trong trờng hợp M đạt GTNN

Bài 19: Cho phơng trình x 2–t-6=0 =>u2(m-1)x –t-6=0 =>um 2 -3m+4=0 (1) ( m là tham số)

a)Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho

Bài 20: Cho phơng trình 2x 2 +(2m-1)x +m-1=0 (1) ( m là tham số)

a)C/m rằng phơng trình (1) luôn có nghiệm với mọi m

b)Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho -1<x1<x2<1

c) Khi (1) có 2 nghiệm phân biệt x1;x2 Lập một biểu thức giữa x1 và x2 mà  m

Bài 21: Cho phơng trình : x 2 + (m-1)x+m 2 =0 (1) ; -x 2 -2mxx+m=0 (2)

C/m rằng ít nhất một trong 2 phơng trình đã cho phải có nghiệm

( Xét  1 +  2 0 với mọi m Thì phải có ít nhất 1 trong 2 biểu thức 10 hoặc 2 0 => đpcm)

Bài 22: Cho 2 phơng trình : x 2–t-6=0 =>u a 1 x+b 1 =0 (1) ; x 2–t-6=0 =>u a 2 x+b 2 =0 (2)

Cho biết a1.a2  2(b1+b2) C/m rằng ít nhất một trong 2 phơng trình đã cho có nghiệm  1 +  2 = a 1 +a 2 -4(b 1 +b 2 )  a1+a2-2a1a2 = (a1-a2)2 0 với mọi m Thì phải có ít nhất 10hoặc 20=> đpcm

Bài 23: Cho 3 phơng trình : ax 2 + 2bx+c=0 (1) ; bx 2 +2cx+a=0 (2) ; cx 2 +2ax+b=0 (3)

Cho biết a ;b;c 0 C/m rằng ít nhất một trong 3 phơng trình đã cho có nghiệm

a => có ít nhất 1 trong 3 biểu thức  1 ’ 0hoặc 2’0

Bài 24: Cho phơng trình : ax 2 + bx+c=0 (1) và cx 2 + bx+a=0 (2) trong đó a; c>0

a) Chứng minh rằng 2 phơng trình cùng có nghiệm hoặc cùng vô nghiệm

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 15

Trang 16

Ôn thi vào 10 - Năm Học :2008-2009b) Giả sử (1) có 2 nghiệm x1;x2 và (2) có 2 nghiệm x3;x4.Chứng minh rằng x1x2+x3.x4 2c) Giả sử (1) và (2) cùng vô nghiệm C/m rằng a+c>b

+Vì a;c>0 nên (1) và (2) đều là bậc 2 và có chung =b2 -4ac => đpcm

Bài 26; Cho phơng trình (m-1)x 2–t-6=0 =>u2(m+1)x +m=0 (1) ( m là tham số)

a) Giải và biện luận nghiệm phơng trình (1) theo m

b) Khi (1) có 2 nghiệm phân biệt x1;x2 Hãy tìm 1 hệ thức giữa x1 và x2 mà  m

c) Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho /x1-x2 /  2

d) a)m=1=>thì (1) có ng c) /x 1 -x 2 /  2<=> (x 1 -x 2 ) 2

 4

e) m1 khi đó  =3m+1 <=>(x 1 +x 2 ) 2 - 4 x 1 x 2  4 +) nếu m<-1/3 thì (1) Vô ng <=>

+) nếu m=-1/3 thì (1) có ng kép ; +) nếu m>-1/3 thì (1) có 2 ng

Bài 27; Cho phơng trình x 2–t-6=0 =>u2mx –t-6=0 =>um 2 -1=0 (1) ( m là tham số)

a) Chứng minh rằng phơng trình (1) có 2 nghiệm phân biệt với mọi m

b) Khi (1) có 2 nghiệm phân biệt x1;x2 Hãy tìm 1 hệ thức giữa x1 và x2 mà  m

c) Tìm m để phơng trình (1) có 2 nghiệm là x1;x2 sao cho

Bài 29; Cho phơng trình x 2–t-6=0 =>umx +m–t-6=0 =>u1=0 (1) ( m là tham số)

Phơng trình (1) có 2 nghiệm x1;x2 với mọi m Tìm max Q=

) 1

( 2

3 2

2 1

2 2

2 1

2 1

x x x

x

x x

2 1 2 1

a t

t

a t

<=> -7/2<a<-3

Bài 32: Cho phơng trình bậc ba :x 3 - (2m-1)x 2 + (m 2 -3m-2)x +2m 2 +2 m=0 (1) (m tham số)

a)C/m rằng phơng trình (1) có nghiệm x=-2 với mọi m

b)Tìm m để (1) có đúng 2 nghiệm ; c) Tìm m để (1) có 3 ng sao cho x12 +x2 +x3 đạtGTNN

Giải bài toán bằng cách lập phơng trình

Trang 17

Ôn thi vào 10 - Năm Học :2008-2009

Bài 4:Một ô tô đi từ A->B trong một thời gian dự định ,nếu đi với vận tốc trung bình là 35km/h thì

đến B chậm 2 giờ,nếu đi với vận tốc trung bình là 50km/h thì đến B sớm 1 giờ Tính SAB và thời gian dự định ban đầu ?

x

+1 Kq: 8 giờ ; 350 km

Bài 5:Một chiếc thuyền khởi hành từ bến A Sau 5h 20 phút Một chiếc ca nô cũng khởi hành từ bến A đuổi theo và gặp thuyền cách A 20km Tính vận tốc của thuyền Biết vận tốc của ca nô lớn hơn vận tốc của thuyền 12km/h

Vận tốc riêng V xuôi dòng V ngợc dòng t (h) S (km)

20 phút rồi quay về A gặp ngời đi xe đạp cách B 24 km Tính vận tốc của mỗi ngời Biết vận tốc ngời đi xe máy lớn hơn vận tốc của ngời đi xe đạp là 36km/h

Bài 8 : Một ngời đixe đạp từ A->B với vận tốc trung bình là 9km/h khi từ B vềA ngời đó chọn

con đờng khác để về nhng dài hơn con đờng lúc đi là 6 km, và đi với vận tốc là 12 km/h nên thời gian về ít hơn lúc đi là 20 phút Tính SAB lúc đi (Gọi độ dài qũãng đờng AB là x (>0) Kq: S AB =30km)

Bài 9:Một chiếc ca nô khởi hành từ bến A - B với vận tốc 30 km/h rồi từ B quay về A Biết rằng thời gian đi xuôi ít hơn thời gian đi ngợc dòng là 40 phút Tính SAB Biết vận tốc của dòng là 3km/

h và vận tốc thật không đổi

Bài 10 : Một ngời đixe đạp từ A->B với vận tốc trung bình là 12km/hSau khi đi đợc 1/3 quãng xe

bị hỏng ngời đó ngồi chờ ôtô mất 20 phút và đi ôtô với vận tốc 36km/h,nên đến B sớm hơn dự

định 1h20phút Tính SAB Gọi độ dài qũãng đờng AB là x (>0) Kq: S AB = 45km

Bài 11 : Một chiếc ca nô khởi hành từ bến A - B dài 120 km rồi từ B quay về A mất tổng cộng 11

giờ Tính vận tốc của ca nô.Biết vận tốc của dòng là 2km/h và vận tốc thật không đổi

Bài 12 : Một chiếc ca nô chạy trên sông 7h , xuôi dòng 108 km và ngợc dòng 63 km Một lần khác

ca nô cũng chạy trong7h ,xuôi dòng 81 km và ngợc dòng 84 km.Tính vận tốc của dòng nớc chảy

và vận tốc riêng của ca nô (Có thể chọn 2 ẩn Kq: vận tổc riêng x=24km/h ;vận tốc dòng y=3km/h

Bài 13:Lúc 7h30 phút một ôtôđi từ A-B nghỉ 30phút rồi đi tiếp đến C lúc 10h 15phút Biết quãng

đờng AB=30km;BC=50km, vận tốc đi trên AB nhỏ hơn đi trên BC là 10km/hTính vận tốc của ôtô trên quãng đờng AB, BC (Gọi vận tốc quãng đờng AB là x, trên BC: (x+10) kq: 30km/h ; 40km/h

Bài 1:Một khu vờn hcn có chu vi 280m Ngời ta làm một lối đi xung quanh vờn (thuộc đất của ờn) rộng 2m ,diện tích còn lại là 4256m2.Tính các kích thớc của vờn (rộng x=60m, dài =80m

v-Bài 2:Một hcn có chu vi 90m.Nếu tăng chiều rộng lên gấp đôi và giảm chiều dài đi15m thì ta đợc hcn mới có diện tích = diện tích hcn ban đầu Tính các cạnh của hcn đã cho

(rộng x=15m, dài =30m)

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 17

Trang 18

Bài 1:Cho một số gồm 2 chữ số Tìm số đó biết rằng tổng 2 chữ số của nó nhỏ hơn số đó 6 lần và thêm 25 vào tích của 2 chữ số đó sẽ đợc số viết theo thứ tự ngợc lại số đã cho

Có thể chọn 2 ẩn Kq:só đó là 54

Bài 2 : Cho một số gồm 2 chữ số Tìm số đó biết rằng :Khi chia số đó cho tổng 2 chữ số của nó thì

đợc thơng là 6 và d 11.Khi chia số đó cho tích 2 chữ số của nó thì đợc thơng là 2 và d 5,

Bài 5 : Cho một số tự nhiên có 2 chữ số Nếu đổi chỗ 2 chữ số thì đợc số mới lớn hơn số đã cho là

36 Tổng của số đã cho và số mới là 110 Tìm số đã cho ( số đó là 37)

Bài 6 : Dân số một khu phố trong 2 năm tăng từ 30.000 ngời đến 32.448 ngời Hỏi trung bình hàng

năm dân số khu phố đó tăng bao nhiêu % (Gọi số% dân số hàng năm khu phố tăng là x % Kq:4%)

Bài 7 : Hai lớp 9A và 9B gồm 105 hs; lớp 9A có 44 hs tiên tiến ,lớp 9B có 45 hs tiên tiến, biết tỉ lệ

học sinh tiên tiến 9A thấp hơn 9B là 10%.Tính tỉ lệ học sinh tiên tiến của mỗi lớp ,và mỗi lớp có bao nhiêu học sinh

Gọi x % là tỉ lệ học sinh tiên tiến của lớp 9A -> 9B là (x+10)% ta có pt: 4400/x +4500/x =105

Kq:80 % và 90% ; 9A: 55hs , 9B 50 hs

Bài 8:Trong tháng đầu 2 tổ sản xuất đợc 800 chi tiết máy Sang tháng 2 tổ I vợt mức 15%, tổ IIvợtmức 20%,, dó đó cuối tháng cả 2 tổ sản xuất đợc tổng cộng 945 chi tiết máy Tính xem trong tháng đầu , tháng hai mỗi tổ sản xuất đợc bao nhiêu chi tiết máy

Bài 9 Hai xí nghiệp theo kế hoạch phải làm 360 dụng cụ Nhờ sắp xếp hợp lý dây chuyền sản xuất

nên xí nghiệp I đã vợt mức 12% kế hoạch xí nghiệp II đã vợt mức 10% kế hoạch ,do đó cả 2 đã

làm đợc 400 dụg cụ Tính số dụng cụ mà mỗi xí nghiệp làm theo kế hoạch và thực tế làm?

IX Giải bài toán bằng cách lập phơng trình

Kq: Vận tốc dự định 50km/h

Bài 2 : Một ôtô đi từ A-B dài 250 km với một vận tốc dự định.Thực tế xe đi hết quãng đờng với vận tốc tăng thêm 10km/h sovới vận tốc dự định nên đến B giảm đợc 50phút Tính vận tốc dự định Kq: Vận tốc dự định 50km/h

Bài 3:Một ngời đixe máy từ A->B lúc 7h sáng với vận tốc trung bình là 30km/h Sau khi đi đợc nửa quãng đờng ngơi đó nghỉ 20 phút rồi đi tiếp nửa quãng đờng sau với vận tốc trung bình 25 km/h Tính SAB Biết ngời đó đến B lúc 12 giờ 50 phút

Bài 4:Một ô tô đi từ A->B trong một thời gian dự định ,nếu đi với vận tốc trung bình là 35km/h thì

đến B chậm 2 giờ,nếu đi với vận tốc trung bình là 50km/h thì đến B sớm 1 giờ Tính SAB và thời gian dự định ban đầu ?

Quãng đờng AB x (đk: x>0)

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 18

Trang 19

Vận tốc riêng V xuôi dòng V ngợc dòng t (h) S (km)

20 phút rồi quay về A gặp ngời đi xe đạp cách B 24 km Tính vận tốc của mỗi ngời Biết vận tốc ngời đi xe máy lớn hơn vận tốc của ngời đi xe đạp là 36km/h

Bài 9 : Một ngời đixe đạp từ A->B với vận tốc trung bình là 12km/hSau khi đi đợc 1/3 quãng

xe bị hỏng ngời đó ngồi chờ ôtô mất 20 phút và đi ôtô với vận tốc 36km/h,nên đến B sớm hơn dự

định 1h20phút Tính SAB Gọi độ dài qũãng đờng AB là x (>0) Kq: S AB = 45km

Bài 10 : Một chiếc ca nô khởi hành từ bến A - B dài 120 km rồi từ B quay về A mất tổng cộng 11

giờ Tính vận tốc của ca nô.Biết vận tốc của dòng là 2km/h và vận tốc thật không đổi

Bài 11 : Một chiếc ca nô chạy trên sông 7h , xuôi dòng 108 km và ngợc dòng 63 km Một lần khác ca nô cũng chạy trong

7h ,xuôi dòng 81 km và ngợc dòng 84 km.Tính vận tốc của dòng nớc chảy và vận tốc riêng của ca nô (Có thể chọn 2

ẩn Kq: vận tổc riêng x=24km/h ;vận tốc dòng y=3km/h

AB=30km;BC=50km, vận tốc đi trên AB nhỏ hơn đi trên BC là 10km/hTính vận tốc của ôtô trên quãng đờng AB,

BC (Gọi vận tốc quãng đờng AB là x, trên BC: (x+10) kq: 30km/h ; 40km/h

Dạng 2: Toán có nội dung hình học

Bài 1 :Một khu vờn hcn có chu vi 280m ngời ta làm một lối đi xung quanh vờn ( thuộc đất của vờn ) rộng 2m , S còn lại là 4256m 2 Tính các kích thớc của vờn (rộng x=60m, dài =80m)

Bài 3 :Một hcn Nếu tăng chiều dài thêm 2m và chiều rộng 3m thì diện tích tăng 100m 2 Nếu cùng giảm chiều dài

và chiều rộng 2m thì diện tích giảm 68m 2 Tính diện tích thửa rộng đó (Kq:22m;14m)

Trang 20

Bài 1:Cho một số gồm 2 chữ số Tìm số đó biết rằng tổng 2 chữ số của nó nhỏ hơn số đó 6 lần và thêm 25 vào tích của 2 chữ số đó sẽ đợc số viết theo thứ tự ngợc lại số đã cho

Có thể chọn 2 ẩn Kq:só đó là 54

Bài 2 : Cho một số gồm 2 chữ số Tìm số đó biết rằng :Khi chia số đó cho tổng 2 chữ số của nó thì

đợc thơng là 6 và d 11.Khi chia số đó cho tích 2 chữ số của nó thì đợc thơng là 2 và d 5,

Bài 5 : Cho một số tự nhiên có 2 chữ số Nếu đổi chỗ 2 chữ số thì đợc số mới lớn hơn số đã cho là

36 Tổng của số đã cho và số mới là 110 Tìm số đã cho ( số đó là 37)

Bài 6 : Dân số một khu phố trong 2 năm tăng từ 30.000 ngời đến 32.448 ngời Hỏi trung bình hàng

năm dân số khu phố đó tăng bao nhiêu % (Gọi số% dân số hàng năm khu phố tăng là x % Kq:4%

Bài 7 : Hai lớp 9A và 9B gồm 105 hs; lớp 9A có 44 hs tiên tiến ,lớp 9B có 45 hs tiên tiến, biết tỉ lệ

học sinh tiên tiến 9A thấp hơn 9B là 10%.Tính tỉ lệ học sinh tiên tiến của mỗi lớp ,và mỗi lớp có bao nhiêu học sinh

Gọi x % là tỉ lệ học sinh tiên tiến của lớp 9A -> 9B là (x+10)% ta có pt: 4400/x +4500/x =105

Kq:80 % và 90% ; 9A: 55hs , 9B 50 hs

Bài 8:Trong tháng đầu 2 tổ sản xuất đợc 800 chi tiết máy Sang tháng 2 tổ I vợt mức 15%, tổ II

v-ợt mức 20%,, dó đó cuối tháng cả 2 tổ sản xuất đợc tổng cộng 945 chi tiết máy Tính xem trong tháng đầu , tháng hai mỗi tổ sản xuất đợc bao nhiêu chi tiết máy

Bài 9 Hai xí nghiệp theo kế hoạch phải làm 360 dụng cụ Nhờ sắp xếp hợp lý dây chuyền sản xuất

nên xí nghiệp I đã vợt mức 12% kế hoạch xí nghiệp II đã vợt mức 10% kế hoạch ,do đó cả 2 đã

làm đợc 400 dụng cụ Tính số dụng cụ mà mỗi xí nghiệp làm theo kế hoạch và thực tế làm

Bài 1:Hai công nhân nếu cùng làm chung thì hoàn thành 1 công việc trong 4 ngày Nếu làm riêng

thì ngời thứ nhất làm hoàn thành công việc ít hơn ngời thứ hai là 6 ngày Hỏi nếu làm riêng thì mỗi ngời làm hoàn thành công việc trong bao nhiêu ngày ?

Bài 2; 2 đội công nhân làm chung 1 công việc d định xong trong 12 ngày họ làm chung với nhau

8 ngày thì đội 1 nghỉ đội 2 làm tiếp với năng suất tăng gấp đôi nên đội 2 đã hoàn thành phần việc còn lại trong 3 ngày rỡi Hỏi nếu làm một mình thì mỗi đội phải làm trong bao lâu thì xong công việc trên?

Lúc đầu

Lúc sau

Bài 3: 2 công nhân làm chung1công việc thì hoàn thành trong 4 ngày.Khi làm ngời thứ nhất làm

một nửa công việc , sau đó ngời thứ hai làm tiếp nửa còn lại thì toàn bộ công việc hoàn thành trong 9 ngày Hỏi nếu làm riêng thì mỗi ngời làm hoàn thành công việc trong bao nhiêu ngày ?

Một mình ng T 1 làm x(ngày) xong -> 1/2 c.v là x/2 (ng)

Tg ng T 2 làm cv trong 9- x/2(ng) -> cả cv là 2(9-x/2)=18-x (ng)

Phơng tr: 1/x -1/18-x =1/4

Bài 4: Một phân xởng theo kế hoạch phải dệt 3000 tấm thảm Trong 8 ngày đầu họ đã thực hiện

đợc đúng kế hoạch , những ngày còn lại họ đã dệt vợt mức mỗi ngày 10 tấm ,nên đã hoàn thành

kế hoạch trớc kế hoạch 2 ngày Hỏi theo kế hoạch mỗi ngày phân xởng phải dệt bao nhiêu tấm?

Bài 5: Một tổ sản xuất dự định sản xuất 360 máy nông nhgiệp Khi làm do tổ chức quản lí

tốt nên mỗi ngày họ đã làm đợc nhiều hơn dự định 1 máy;Vì thế tổ đã hoàn thành trớc thời hạn 4 ngày Hỏi số máy dự định

sản xuất trong mỗi ngày là bao nhiêu ?

Giáo viên : Lê Ngô Trung – Trờng THCS Phợng Sơn, Lục Ngạn 20

Ngày đăng: 05/05/2015, 20:00

TỪ KHÓA LIÊN QUAN

w