4'-TRUoNG rHPr LE xoev Ot 1'fff 1'fftl DAI HOC - f,AN fff
Nim hec z0t0-z0n MU*, ,oU*rlio\rfrort
f::ryNurEN
Cf,u 1: Cho him s6 y = -r' + 3x2 -4 (l)
1 Khio s6t sU bii5n thi€n vi v€ <16 thi (C) cua him sO (t).
2 Chrmg minh r6ng: Mgi duong thqg qua I(l; -2).v6ihp s6 g6c k < 3 dAu cit gO thi (C) tei
ba di6m ph6n bigt trong d6 mQt diiAm h trung dii6m cria ttoan thAng n6i trai tti€m cdnl4i.
Ciu2z
l Giaiphuongtrinh: tanx.tan3x a3=-2 - .
I + cos2x
2 Giii phuong trinh: !* * x ,12-x' =2.
3 Giai bAt phuong trinh: logo (9' - l).log* ,?, = j
'22
Ciu 3: Tinh tich ph6n: f = Jd+sinr.*
0
Cffu 4: Cho hinh vu6ng ABCD c6 cenh ld ali L6y H thuQc do4n AC sao cho ATI: a/2
Kd Hx *Qng g6c vqr (ABCD) vi 6y <Ii6m S thuQc Hx sao cho g6c ,lSC Uing 45o Tinh b6n
kfnh mat cdu ngo4i ti€p S.ABCD ry,
Ciu 5:
ciai he phuong trinh: {f1 J7;)0 +
'[v' +t) =t lzt' - yt +(l+3x212' +3x.22r * ! =2
CAU 6:
l Trong mat ph6ng vdi hq trgc to4 tlQ Oxy cho iludrng trdn (C): x ' + y' - 4x + 6y =36 .
Dudng thang A qua f(-2:.0) vi cit duong trdn t4i hai <li€m P, Q Vi6t phuong trinh cria A
sao cho doan PQ ngin nhdt
2 Trong kh6ng gian v6i hQ tryc to4 ttQ axyz Cho A (-5; -3; 2); B(-2;0; -$;C(1; 0; -1)
Lfp phucmg trinh mat phing qua OA vi chia tti di$n OABC thanh 2 ph,an c6 t1i s6 th€
tich bAng 2 (DiCm B thu$c ph6n c6 the tich lcm hon),
www.violet.vn/haimathlx
www.violet.vn/haimathlx