1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi LƯỢNG GIÁC Tạp chí THTT 2010

9 193 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 0,95 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

b Chứng minh rằng tam giác ABC có các góc thỏa mãn tính chất sau thì tam giác ABC là tam giác đều: 2sin 3sin 4sin 5cos 3cos cos Hướng dẫn: a... Chứng minh tam giác ABC đều.. b Xét tam g

Trang 1

TUYỄN TẬP ĐỀ THI “TOÁN HỌC TUỔI TRẺ”:

LƯỢNG GIÁC

Đề 01: (THTT 2010) Giải phương trình:

æ + ö+ æ + ö= +

Hướng dẫn:

Biến đổi phương trình ta được 1 cos2- x=sinxÛ2sin2x=sinx

x k= p x= +p k p x= p +k p

Đề 02: (THTT 2010) Giải phương trình:

2

x

= ê ç - ÷- ç - ÷ú

Hướng dẫn:

Biến đổi PT đưa về dạng:

(cos 2 sin 2 sin) 2 2 cos 2 sin cos 2 (sin 1) 0

Đáp số: 3

k

Đề 03: (THTT 2010) Giải phương trình:

sin 2

x

Hướng dẫn:

Điều kiện: sin 2x¹0

Biến đổi PT về dạng: 42 1

5 0 sin 2x+sin 2x- = Đáp số: ; 1arcsin 4 ; 1arcsin 4

Đề 04: (THTT 2010) Giải phương trình:

2cos cos 2 cos3x x x+ =5 7 cos 2x

Hướng dẫn:

cos 2x 1 2cos 2x 5 0 cos 2x 1

Đáp số: x k= p

Đề 05: (THTT 2010) Giải phương trình:

cos x+cosx+sin x=0

Hướng dẫn:

Biến đổi PT về dạng

2

1 cosx cosx sin sinx x 0 1 cosx cosx sin 1 cosx x 1 cosx 0

Trang 2

Đáp số: 2 ; arccos1 2 2 ; arccos1 2 2

Đề 07: (THTT 2010) Giải phương trình:

4cos cos 2 cos 4 cos

x

Hướng dẫn:

Biến đổi PT về dạng

cos 2 1 3

4

x x

= ì

ï

= ïî

Đáp số: x k= 8 p

Đề 07: (THTT 2010) Tìm giá trị nhỏ nhất của hàm số:

2

cos sin 2cos sin

x y

=

- , với 0 x 3

p

< £

Hướng dẫn:

Viết hàm số dưới dạng

2 2

1 tan tan 2 tan

x y

+

=

- Đặt t =tan 0x ( < £t 3) Khảo sát hàm số 2 ( )

1

2

t

+

= < £

-Ta được kết quả: miny=2 khi t =1 hay

4

x=p

Đề 08: (THTT 2010) Giải phương trình:

tan tan sin 3 sin sin 2

æ - ö æ + ö = +

Hướng dẫn:

Điều kiện: cos cos 0

æ - ö æ + ö¹

Ta có tan tan 1 sin 2 2cos( 1) 0

æ - ö æ + ö= - Û + =

k

Đề 09: (THTT 2010) Giải phương trình:

(1 cos )(1 cos 2 )(1 cos3 ) 1

2

Hướng dẫn:

Biến đổi PT về dạng:

2

cos cos cos

x

k

Trang 3

Đề 10: (THTT 2010) Giải phương trình:

3sinx+ =1 sin x-cos x

Hướng dẫn:

Biến đổi PT về dạng 2

2sin x-3sinx- =2 0

x= - +p k p x= p +k p

Đề 11: (THTT 2003) Giải phương trình:

cos x+sin x=64 cos x+sin x

Hướng dẫn:

Phương trình vô nghiệm Áp dụng BĐT Cauchy

Đề 12: (THTT 2003) Tìm các nghiệm của phương trình:

2

thỏa mãn 1

10

x³

Hướng dẫn:

x

x

;

-Đề 13: (THTT 2004)

a) Chứng minh rằng tam giác ABC có các góc thỏa mãn tính chất sau thì tam giác ABC là tam giác đều:

3

b) Tìm điều kiện để hai phương trình sau tương đương:

sin sin 2

1 sin 3

x

+

= - và cosx m+ sin 2x=0

Hướng dẫn:

a) Với mọi tam giác ABC: sin sin cos cos

b) sin sin 2

sin 3

x x

Đáp số: 1

2

Đề 14: (THTT 2004)

a) Chứng minh rằng tam giác ABC có các góc thỏa mãn tính chất sau thì tam giác ABC là tam giác đều:

sin 2 sin 2 sin 2 sin sin sin 4sin sin sin

Trang 4

b) Giải hệ phương trình:

( ) ( )

3tan 6sin 2sin 2

tan 2sin 6sin 2

y

y

-ïï í

ïî

Hướng dẫn:

a) 4sin sin sin sin( ) sin( ) sin( )

-b) Nếu tan 0

2

y = thì hệ có nghiệm (l kp; 2p)

Nếu tan 3

2

y = thì hệ có nghiệm 2 ;2 2

3

p

aÎ -æç ö÷

è ø và

cos , sin

Nếu tan 3

2

y = - thì hệ có nghiệm 2 ; 2 2

3

p

aÎ -æç ö÷

è ø và

cos , sin

Đề 15: (THTT 2004) Giải phương trình:

1 cos3 sin 2 cos 4 sin 2 sin 3 1 cos

2

Hướng dẫn:

Đáp số: x= +p k2 p

Đề 16: (THTT 2004) Tìm giá trị lớn nhất của biểu thức: Q=sin2A+sin2B+2sin2C, trong đó A, B, C là 3 góc của tam giác ABC bất kì

Hướng dẫn:

Đáp số: 25

8

Đề 17: (THTT 2010)

a) Giải phương trình: 4cos cos 2 cos3x x x=cos 6x

b) Chứng minh rằng tam giác ABC có các góc thỏa mãn tính chất sau thì tam giác ABC là tam giác đều:

2sin 3sin 4sin 5cos 3cos cos

Hướng dẫn:

a)

Trang 5

Đáp số: ; ; .

x= +p kp x= +p kp x= - +p kp

b) Sử dụng sin sin 2cos

2

C

Đề 18: (THTT 2005) Giải phương trình:

sin sin 3 cos cos3 1

8

+

=

æ - ö æ + ö

Hướng dẫn:

Sử dụng 4sin3x=3sinx-sin 3 ; 4cosx 3x=3cosx+cos3x

6

x= - +p kp

Đề 19: (THTT 2005) Giải phương trình:

1 cos cos 2 cos3 sin sin 2 sin 3

2

Hướng dẫn:

Sử dụng 4sin3x=3sinx-sin 3 ; 4cosx 3x=3cosx+cos3x

x= - +p kp x= p +kp x= - +p kp

Đề 20: (THTT 2005)

a) Cho tam giác ABC thỏa mãn:

2 3 tan tan

cos cos 1

ì

ï í

î

Chứng minh tam giác

ABC đều

b) Xét tam giác ABC Tìm giá trị nhỏ nhất của biểu thức:

5cot 16cot 27cot

Hướng dẫn:

a) Đặt tan ; tan ( 0; 0)

b)Ta có:

3 2 cot 12 4 cot 9 18 cot

12 khi cot 1, cot , cot

Đề 21: (THTT 2005) Tìm giá trị lớn nhất của biểu thức: sin 1 6cos

Hướng dẫn:

Khảo sát hàm số

Trang 6

Đáp án:

[ 0;4 ]

5 5 max

3

2 4 0; ; sin

è ø

Đề 21: (THTT 2006)

a) Giải phương trình: cot tan 2cos 4

sin 2

x

x

b) Tìm các góc A, B, C của tam giác ABC sao cho biểu thức:

sin sin sin

Q= A+ B- C đạt giá trị nhỏ nhất

Hướng dẫn:

x= +p kp x= - +p kp

b) A B= =30 , 0 C=120 0

Đề 22: (THTT 2006) Giải phương trình:

æ + ö+ æ + ö= +

Hướng dẫn:

Biến đổi phương trình ta được 1 cos2- x=sinxÛ2sin2x=sinx

x k= p x= +p k p x= p +k p

Đề 23: (THTT 2006)

a) Chứng minh rằng trong mọi tam giác ABC ta luôn có:

b) Giải phương trình:

sin sin 2

2 sin 2 sin

Hướng dẫn:

b) Đáp số: 2 ; 2 2

x= ± +p k p x= ± p +k p

Đề 24: (THTT 2006) Giải phương trình:

( )

Hướng dẫn:

Đáp số: 2

2

x= +p k p

Đề 25: (THTT 2006) Tính các góc của tam giác ABC biết 2A=3 , B a= 2 b

Hướng dẫn:

Đáp số: A=45 ; 0 B=30 ; 0 C =105 0

Đề 24: (THTT 2007) Giải phương trình:

tan x-tan sinx x- -1 cos x =0

Trang 7

Hướng dẫn:

Đưa về phương trình tích

Đề 25: (THTT 2007)

a) Chứng minh rằng tam giác ABC đều nếu:

sin sin sin sin

2

4sin 1 4sin 2

2

4sin 1 4sin 2

A B B C

ì

ïï í

ïî b) Giải phương trình: 3 4sin 2- 2 x=2cos 2 1 2sinx( + x)

Hướng dẫn:

a) Hàm số y=2x+4x đồng biến trên R có ( ) 1y x = Û =x 0

Ta có:

sin

sin

2

4sin 1 4sin sin sin 2

A

x= - +p k p x= p +k p x= p +k p x= p +k p

Đề 26: (THTT 2007) Giải phương trình:

2cos cos 2 cos3x x x+ =5 7 cos 2x

Hướng dẫn:

cos 2x 1 2cos 2x 5 0 cos 2x 1

Đáp số: x k= p

Đề 27: (THTT 2007) Giải phương trình:

sin cos cos 2 tan tan

Hướng dẫn:

Đưa về phương trình tích

Đáp số: 2 ; 2

2

x= +p k p x k= p

Đề 28: (THTT 2007) Giải phương trình:

sin 3 sin 2 sin

æ - ö= æ + ö

Hướng dẫn:

x= +p kp

Đề 29: (THTT 2008) Giải phương trình:

(1 cos )(1 cos 2 )(1 cos3 ) 1

2

Hướng dẫn:

Trang 8

Biến đổi PT về dạng:

2

cos cos cos

x

k

Đề 30: (THTT 2008) Giải phương trình:

2sin x+2sin cosx x+cos 2x-sinx=0

Hướng dẫn:

x= ± +p kp x= +p k p

Đề 31: (THTT 2008)

a) Giải phương trình: 1 tan tan 2- x x=cos3x

b) Cho tam giác ABC thỏa mãn: cos2 3 cos2( cos2 ) 5 0

2

A+ B+ C + = Tính độ lớn ba góc của tam giác đó

Hướng dẫn:

a) Đáp số: cos3 0

cos 1

x x

= ì

î

b) Đáp số:A=30 , 0 B C= =75 0

Đề 32: (THTT 2009) Giải phương trình:

tan tan sin 3 sin sin 2

æ - ö æ + ö = +

Hướng dẫn:

x k= p x k= p x= - p +k p

Đề 33: (THTT 2009) Giải phương trình:

4cos cos 2 cos 4 cos

x

Hướng dẫn:

Biến đổi PT về dạng

cos 2 1 3

4

x x

= ì

ï

= ïî

Đáp số: x k= 8 p

Đề 34: (THTT 2010) Giải phương trình:

5 cos 2

2cos

3 2 tan

x

x x

+

Hướng dẫn:

Đáp số:

Trang 9

Đề 35: (THTT 2010)

a) Giải phương trình: 2cos 22 x+cos 2 sin 3x x+3sin 22 x=3

b) Tìm GTLN- GTNN của hàm số: ( ) sin 2cos2

cos 2sin

2

x x

f x

x x

+

=

+ trên 0;2

p

é ù

ê ú

ë û

Hướng dẫn:

Đáp số:

Đề 36: (THTT 2011) Giải phương trình:

2 4

2

1 tan

x

x

Hướng dẫn:

Đáp số:

Đề 37: (THTT 2011) Giải phương trình:

sin 3 cos3 2 2 cos 1 0

4

Hướng dẫn:

Đáp số:

Đề 38: (THTT 2011) Giải phương trình:

( ) ( 2 ) sin 1

2 1 cos cot 1

cos sin

x

+

Hướng dẫn:

Đáp số:

Đề 39: (THTT 2011) Giải phương trình:

1 2011tan cot 2 1005 3

sin 2

x

Hướng dẫn:

Đáp số:

Đề 40: (THTT 2011) Tìm xÎ[2;+¥)thỏa mãn phương trình :

p

+ + æ + - ö=

Hướng dẫn:

Đáp số:

Ngày đăng: 26/10/2014, 20:00

TỪ KHÓA LIÊN QUAN

w