eConomICs and CosT drIvers for PhoTobIologICal hydrogen ProduCTIon A.recent.cost.analysis.has.looked.at.the.economics.of.biological.H2.production.using... Hydrogen alga.Platymonas subco
Trang 15.2.1 O xyGen -t Olerant h ydrOGenaSe S yStemS
the.existence.of.competing.pathways.for.photosynthetic.reductants In.both.organ-isms, the major competing pathway under aerobic conditions is the CO2 fixation
pathway In green algae, photosynthetically reduced ferredoxin donates electrons
into account as well One of them involves the uptake hydrogenase found in N2
-fixing.cyanobacteria,35–37.which.consumes.the.H2
.gas.produced.by.either.the.bidi-rectional hydrogenase or nitrogenase This problem can be easily addressed by
genetically.knocking.out.the.uptake.hydrogenase.gene.in.the.organism.of.choice.38,39
The.second.competitive.pathway.is.a.homologue.of.respiratory.Complex.I.present
in.the.membranes.of.cyanobacteria.and.proposed.to.form.a.complex.with.the.bidi-rectional.hydrogenase.through.a.diaphorase.subunit.14,40.This.means.that.although
functionally able to accept reductants from the photosynthetic electron transport
chain, as indicated in figure.5.1, the cyanobacterial hydrogenase may also play a
Trang 3continuous H2 production can be maintained by the use of a two-reactor system,
where.O2.evolution.and.H2
Trang 4to allow the cultures periods of normal photosynthetic activity to replace storage.
on direct biophotolysis.69 Two recent publications, however, report H2 production
by sulfur-deprived cultures resuspended in the total absence of added acetate.70,71
Chl–1•h–1,.and.maximum.H2.photoproduction.rate.is.400.µM.H2•mg.Chl–1•h–1) As.is
the.case.with.an.O2-tolerant.hydrogenase.system,.an.anaerobic.H2-photoproducing
Trang 6fIgure . Schematic diagrams of the most common outdoor algal photobioreactor.
systems: (a) circular pond, (b) paddle wheel raceway, (c) sloping panel reactor, (d) helical.
Trang 8Ci5000 - Korad PMMA
Equivalent NREL Exposure Time (y)
Trang 9of polymers.94 However, similar data for H2 permeation are limited Some data
that we did find are presented in table.5.2 The temperature dependence of the
be representative of the performance of received polymer materials Errors are
estimated to be on the order of ±10% The higher permeability coefficients for
the.thicker.polymers.may.reflect.the.difficulty.of.sealing.the.samples.in.the.test
fixture Oxygen-permeation.rates.at.NREL.were.measured.on.a.Mocon.Oxytran
instrument To.our.knowledge,.there.is.no.information.available.on.the.effect.of
polymer.weathering.on.H2.or.O2.permeation One.can.assume.that.permeability
will increase with time It can be anticipated that the gas-permeation
m ·day·atm hydrogen, h
Permeability Coeffient (P)cm ·mm/
2003,.Appendix.II.
Trang 10. eConomICs and CosT drIvers for
PhoTobIologICal hydrogen ProduCTIon
A.recent.cost.analysis.has.looked.at.the.economics.of.biological.H2.production.using
a.C reinhardtii.green.algal.system.such.as.those.described.in.section.5.2.75.Although
photobiological H2 production with cyanobacteria occurs via a different pathway,
Trang 13Database, for example) In two studies, hourly insolation data were used to
opti-mize the production unit size and the storage capacity for dedicated stand-alone
Trang 164 Adams,.M.W.W.,.The.structure.and.mechanism.of.iron-hydrogenases,.Biochim
5 Vignais, P.M and Colbeau, A., Molecular biology of microbial hydrogenase, Curr
6 Appel, J and Schulz, R., Hydrogen metabolism in organisms with oxygenic
photo-synthesis:.hydrogenases.as.important.regulatory.devices.for.a.proper.redox.poising?.J
7 Vignais,.P.M.,.Billoud,.B.,.and.Meyer,.J.,.Classification.and.phylogeny.of.hydrogenases,.
8 Happe,.T and.Kaminski, A.,.Differential regulation of.the [Fe]-hydrogenase during.
anaerobic.adaptation.in.the.green.alga.Chlamydomonas reinhardtii,.Eur J Biochem.,.
269,.1,.2002.
9 Forestier, M et al., Expression of two [Fe]-hydrogenases in Chlamydomonas
10 Roessler, P and Lien, S., Purification of hydrogenase from Chlamydomonas
11 Ghirardi,.M.L.,.Togasaki,.R.K.,.and.Seibert,.M.,.Oxygen.sensitivity.of.algal.H2
-produc-tion,.Appl Biochem Biotechnol.,.63–65,.141,.1997.
12
Happe,.T.,.Mosler,.B.,.and.Naber,.J.D.,.Induction,.localization.and.metal.content.of.hydrog-enase.in.the.green.alga.Chlamydomonas reinhardtii,.Eur J Biochem.,.222,.769,.1994.
13 Posewitz, M.C et al., Discovery of two novel radical S-adenosylmethionine proteins.
required.for.the.assembly.of.an.active.[Fe].hydrogenase,.J Biol Chem.,.279,.25711,.2004.
21 Randt, C and Senger, H., Participation of the two photosystems in light dependent.
hydrogen.evolution.in.Scenedesmus obliquus, Photochem Photobiol.,.42,.553,.1985.
22 Healey, F.P., The mechanism of hydrogen evolution by Chlamydomonas moewusii,.
23 Ghirardi,.M.L et.al.,.Approaches.to.developing.biological.H 2
-photoproducing.organ-isms.and.processes,.Biochem Soc Trans.,.33,.70,.2005.
24 Melis, A et al., Sustained photobiological hydrogen gas production upon reversible.
Trang 1728 Posewitz, M.C et al., Identification of genes required for hydrogenase activity in.
from.Chlamydomonas reinhardtii,.Arch Biochem Biophys.,.213,.37,.1982.
33 Happe, T and Naber, J.D., Isolation, characterization and N-terminal amino acid.
sequence of hydrogenase from green alga Chlamydomonas reinhardtii, Eur J
34
35 Tamagnini,.P et.al.,.Hydrogenase.in.Nostoc.sp strain.PCC.73102,.a.strain.lacking.a.
bidirectional.enzyme,.Appl Enviorn Microbiol.,.63,.1801,.1997.
36 Tamagnini, P et al., Diversity of cyanobacterial hydrogenase, a molecular biology.
45 Melis, A., Niedhardt, J., and Benemann, J.R., Dunaliella salina (Chlorophyta) with.
Trang 18reducing.the.content.of.light.harvesting.pigment J Appl Phycol 11,.195,.1999.
52 Nakajima, Y and Ueda, T., The improvement of marine microalgal productivity by.
reducing.the.light-harvesting.pigment,.J Appl Phycol., 12,.285,.2000.
61 Laurinavichene, T.V et al., Demonstration of sustained hydrogen photoproduction.
by.immobilized,.sulfur-deprived.Chlamydomonas reinhardtii.cells,.Int J Hydrogen
62 Kruse, O et al., Improved photobiological H 2 production in engineered green algal.
cells, J Biol Chem.,.280,.34170,.2005.
63
Kosourov,.S.,.Seibert,.M.,.and.Ghirardi,.M.L.,.Effects.of.extracellular.pH.on.the.meta-bolic.pathways.in.sulfur-deprived,.H2-producing.Chlamydomonas reinhardtii.cultures,.
Trang 1968 Tsygankov, A et al., Hydrogen photoproduction under continuous illumination by.
sulfur-deprived,.synchronous.Chlamydomonas reinhardtii.cultures,.Int J Hydrogen
alga.Platymonas subcordiformis,.Biochem Eng J.,.19,.69,.2004.
73 Guan,.Y et.al.,.Significant.enhancement.fo.photobiological.H 2 evolution.by
carbonylcy-anide.m-chlorophenylhydrazone.in.the.marine.green.alga.Platymonas subcordiformis,.
74 Torzillo, G and Vonshak, A., Biotechnology for algal mass cultivation, in Recent
9,.Science.Publishers,.Inc.,.Enfield,.NH,.2003,.p 45.
75 Amos, W.A., Updated Cost Analysis of Photobiological Hydrogen Production from
Energy.Laboratory,.Golden,.CO,.2004.
76 Akkerman, I et al., Photobiological hydrogen production: photochemical efficiency.
and.bioreactor.design,.in.Bio-methane and Bio-hydrogen,.Reith,.J.H.,.Wijfels,.R.H.,.
and.Barten,.H.,.Eds.,.Dutch.Biological.Hydrogen.Foundation,.Petten,.The.Netherlands,.
2003,.chap 6.
77 Palz, O and Scheibenbogen, K., Photobioreactors: design and performance with.
respect.to.light.energy.input,.in.Advances in Biochemical Engineering/Biotechnology,.
Scheper,.T.,.Ed.,.59,.Springer-Verlag,.Berlin,.1998,.p 123.
78 Casamajor, A.B and Parsons, R.E., Design Guide for Shallow Ponds, Section 2,.
UCRL-52385,.Rev 1,.Lawrence.Livermore.Laboratory,.Livermore,.CA,.January.1979.
79 Pruett,.M.L.,.Solar.Power.and.Energy.Storage.System,.U.S Patent.6,374,614,.2002.
80 Platt,.E.A and.Wood,.R.I.,.Engineering Feasibility of a 150 kW Irrigation Pumping
84 Blake, D.M and Kennedy, C.E., Hydrogen Reactor Development and Design for
Report, AOP.3.1.5,.Subtask.3.1.5.1,.National.Renewable.Energy.Laboratory,.Golden,.
CO,.2004 (For.a.copy,.e-mail.D Blake.at.dan_blake@nrel.gov.)
85 Farrah, M., Ultraviolet Aging of Transparent Plastic Coverplates for Solar Energy.
Equipment,.M.S thesis,.University.of.Lowell,.Lowell,.MA,.1983.
86 Anon.,.Materials in Solar Thermal Collectors: Identification of New Types of
,.Report.1996-11-08,.IEA.Solar.Heating.and.Cooling.Pro-gramme,.Brussels,.Belgium,.1996.
87 Raman,.R.,.Mantel,.S.,.Davidson,.J.,.Wu,.C.,.and.Jorgensen,.G.,.A.review.of.polymer.
materials.for.solar.water.heating.systems,.Trans ASME,.122,.92–100,.2000.
Trang 2088 Anon.,.Solar Hot Water Heating Systems: Identification of Plastic Materials for Low
91 Jorgensen,.G and.Rangaprasad,.G.,.Ultraviolet Reflector Materials for Solar
92 Watt,.A.S and.Mann,.M.K.,.Evaluation of the Cost of Manufacturing a Housing Unit
,.Milestone.Report,.U.S DOE,.Hydro-gen.Program,.National.Renewable.Energy.Laboratory,.Golden,.CO,.1999 (For.a.copy,.
e-mail.D Blake.at.dan_blake@nrel.gov.)
93 Blake,.D.M and.Kennedy,.C.E.,.Hydrogen Reactor Development & Design for
AOP.3.1.5,.Subtask.3.1.5.1,.National.Renewable.Energy.Laboratory,.Golden,.CO,.2005
(For.a.copy,.e-mail.D Blake.at.dan_blake@nrel.gov.)
94 Massey,.L.K.,.Permeability Properties of Plastics and Elastomers: A Guide to
,.2nd.ed.,.Plastic.Design.Library/William.Andrew.Publish-ing,.Norwich,.NY,.2003,.Appendix.II.
95 Langowski,.H.-C.,.Flexible.barrier.materials.for.technical.applications,.Vacuum
96 Spath,.P.L and.Amos,.W.A.,.Assessment of Natural Gas Splitting with a Concentrating
Energy.Laboratory,.Golden,.CO,.2002.
Trang 22Hydrogen Separation
U (Balu) Balachandran, T H Lee, and S E Dorris
ConTenTs
6.1 Introduction 147
6.2 Experimental 149
6.3 Results 149
6.4 Conclusions 155
Acknowledgments 156
References 156
. InTroduCTIon The.U.S Department.of.Energy’s.Office.of.Fossil.Energy.sponsors.a.wide.variety.of research,.development,.and.demonstration.programs.aimed.at.maximizing.the.use of vast domestic fossil resources and ensuring a fuel-diverse energy sector while responding.to.global.environmental.concerns Development.of.cost-effective,.mem- brane-based.reactor.and.separation.technologies.is.of.significant.interest.for.appli-cations in advanced fossil-based power and fuel technologies Because concerns over.global.climate.change.are.driving.nations.to.reduce.CO2.emissions,.hydrogen is.considered.the.fuel.of.choice.for.the.electric.power.and.transportation.industries
In.his.2003.State.of.the.Union.address,.President.Bush.announced.a.Hydrogen.Fuel
Initiative.to.develop.hydrogen.production.and.distribution.technologies.for.powering
fuel.cell.vehicles.and.stationary.fuel.cell.power.sources The.goal.of.this.initiative
is.to.lower.the.cost.of.hydrogen.enough.to.make.fuel.cell.cars.cost-competitive.with
conventional.gasoline-powered.vehicles.by.2010,.and.to.advance.the.methods.of.pro-ducing.hydrogen.from.renewable.resources,.nuclear.energy,.and.coal
As.part.of.the.effort.to.devise.cost-effective,.efficient.processes.for.producing
and.utilizing.hydrogen,.Argonne.National.Laboratory.(ANL).is.developing.dense,
hydrogen-permeable.membranes.for.separating.hydrogen.from.mixed.gases.at.com-
mercially.significant.fluxes.under.industrially.relevant.operating.conditions Of.par-ticular.interest.is.the.separation.of.hydrogen.from.product.streams.that.are.generated
.Work.supported.by.the.U.S Department.of.Energy,.Office.of.Fossil.Energy,.National.Energy.Technology.
Laboratory’s.Hydrogen.and.Gasification.Technologies.Program,.under.Contract.W-31-109-Eng-38.
Trang 24).during.permeation.mea-surements was controlled with an MKS mass flow controller and was measured
using.a.Humonics.Field-Cal.570.flow.calibrator The.sweep.gas.was.analyzed.with
a Hewlett-Packard 6890 gas chromatograph Feed gases included dry or wet 4%
H2/balance.He,.100%.H2,.and.simulated.syngas.(66%.H2,.33%.CO,.and.1%.CO2) For
Trang 25Compositions of gas mixtures used to Test stability of anl-e membranes
Composition of gas mixture gases used to Prepare mixture
Trang 26after.sintering To.more.reproducibly.fabricate.ANL-3.membranes.without.intercon-
nected.porosity,.we.developed.ANL-3e.membranes,.which.contain.the.same.hydro-gen.transport.metal.as.ANL-3a.membranes.but.have.a.ceramic.matrix.that.densifies
more readily Figure.6.2 shows that the hydrogen flux through an ANL-3e
mem-brane,.like.that.through.an.ANL-3a9.or.-3b.membrane,10.increases.linearly.with.the
ever,.interfacial.reactions.may.become.rate.limiting The.highest.flux.for.the.ANL-3e membranes (19.0 cm3(STP)/min-cm2) was only slightly lower than that for an
ANL-3a.membrane.(20.cm3(STP)/min-cm2).12.However,.if.the.ceramic.matrix.only
Trang 27800°C 700°C 600°C 500°C
Trang 28ANL-3d (wet) ANL-3d (dry) ANL-2a (wet) ANL-2a (dry)
Trang 29exposure but was stable thereafter At 900°C, the flux actually increased slightly.
earlier measurements with 51 ppm H2S, a mixture of UHP H2 and UHP He was
used.for.the.initial.reading,.then.UHP.H2.was.switched.to.an.H2S-containing.gas
900°C 800°C 700°C 600°C
0
5 10-7
1 10 -6 1.5 10 -6
Trang 30alcohol,.from.one.face.to.the.other,.showed.that.the.sample.contained.interconnected
porosity.after.the.permeation.test.in.2,922.ppm.H2S;.alcohol.had.not.penetrated.the
sample before the permeation test Also, examination of the sample by scanning
electron microscopy indicated a loss of metal from the membrane surface Thus,