1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Materials for the Hydrogen Economy (2007) Episode 6 doc

30 314 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 0,94 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

eConomICs and CosT drIvers for PhoTobIologICal hydrogen ProduCTIon A.recent.cost.analysis.has.looked.at.the.economics.of.biological.H2.production.using... Hydrogen alga.Platymonas subco

Trang 1

5.2.1 O xyGen -t Olerant h ydrOGenaSe S yStemS

the.existence.of.competing.pathways.for.photosynthetic.reductants In.both.organ-isms, the major competing pathway under aerobic conditions is the CO2 fixation

pathway In green algae, photosynthetically reduced ferredoxin donates electrons

into account as well One of them involves the uptake hydrogenase found in N2

-fixing.cyanobacteria,35–37.which.consumes.the.H2

.gas.produced.by.either.the.bidi-rectional hydrogenase or nitrogenase This problem can be easily addressed by

genetically.knocking.out.the.uptake.hydrogenase.gene.in.the.organism.of.choice.38,39

The.second.competitive.pathway.is.a.homologue.of.respiratory.Complex.I.present

in.the.membranes.of.cyanobacteria.and.proposed.to.form.a.complex.with.the.bidi-rectional.hydrogenase.through.a.diaphorase.subunit.14,40.This.means.that.although

functionally able to accept reductants from the photosynthetic electron transport

chain, as indicated in figure.5.1, the cyanobacterial hydrogenase may also play a

Trang 3

continuous H2 production can be maintained by the use of a two-reactor system,

where.O2.evolution.and.H2

Trang 4

to allow the cultures periods of normal photosynthetic activity to replace storage.

on direct biophotolysis.69 Two recent publications, however, report H2 production

by sulfur-deprived cultures resuspended in the total absence of added acetate.70,71

Chl–1•h–1,.and.maximum.H2.photoproduction.rate.is.400.µM.H2•mg.Chl–1•h–1) As.is

the.case.with.an.O2-tolerant.hydrogenase.system,.an.anaerobic.H2-photoproducing

Trang 6

fIgure . Schematic diagrams of the most common outdoor algal photobioreactor.

systems: (a) circular pond, (b) paddle wheel raceway, (c) sloping panel reactor, (d) helical.

Trang 8

Ci5000 - Korad PMMA

Equivalent NREL Exposure Time (y)

Trang 9

of polymers.94 However, similar data for H2 permeation are limited Some data

that we did find are presented in table.5.2 The temperature dependence of the

be representative of the performance of received polymer materials Errors are

estimated to be on the order of ±10% The higher permeability coefficients for

the.thicker.polymers.may.reflect.the.difficulty.of.sealing.the.samples.in.the.test

fixture Oxygen-permeation.rates.at.NREL.were.measured.on.a.Mocon.Oxytran

instrument To.our.knowledge,.there.is.no.information.available.on.the.effect.of

polymer.weathering.on.H2.or.O2.permeation One.can.assume.that.permeability

will increase with time It can be anticipated that the gas-permeation

m  ·day·atm hydrogen, h 

Permeability Coeffient (P)cm  ·mm/

2003,.Appendix.II.

Trang 10

. eConomICs and CosT drIvers for

PhoTobIologICal hydrogen ProduCTIon

A.recent.cost.analysis.has.looked.at.the.economics.of.biological.H2.production.using

a.C reinhardtii.green.algal.system.such.as.those.described.in.section.5.2.75.Although

photobiological H2 production with cyanobacteria occurs via a different pathway,

Trang 13

Database, for example) In two studies, hourly insolation data were used to

opti-mize the production unit size and the storage capacity for dedicated stand-alone

Trang 16

4 Adams,.M.W.W.,.The.structure.and.mechanism.of.iron-hydrogenases,.Biochim

5 Vignais, P.M and Colbeau, A., Molecular biology of microbial hydrogenase, Curr

6 Appel, J and Schulz, R., Hydrogen metabolism in organisms with oxygenic

photo-synthesis:.hydrogenases.as.important.regulatory.devices.for.a.proper.redox.poising?.J

7 Vignais,.P.M.,.Billoud,.B.,.and.Meyer,.J.,.Classification.and.phylogeny.of.hydrogenases,.

8 Happe,.T and.Kaminski, A.,.Differential regulation of.the [Fe]-hydrogenase during.

anaerobic.adaptation.in.the.green.alga.Chlamydomonas reinhardtii,.Eur J Biochem.,.

269,.1,.2002.

9 Forestier, M et al., Expression of two [Fe]-hydrogenases in Chlamydomonas

10 Roessler, P and Lien, S., Purification of hydrogenase from Chlamydomonas

11 Ghirardi,.M.L.,.Togasaki,.R.K.,.and.Seibert,.M.,.Oxygen.sensitivity.of.algal.H2

-produc-tion,.Appl Biochem Biotechnol.,.63–65,.141,.1997.

12

Happe,.T.,.Mosler,.B.,.and.Naber,.J.D.,.Induction,.localization.and.metal.content.of.hydrog-enase.in.the.green.alga.Chlamydomonas reinhardtii,.Eur J Biochem.,.222,.769,.1994.

13 Posewitz, M.C et al., Discovery of two novel radical S-adenosylmethionine proteins.

required.for.the.assembly.of.an.active.[Fe].hydrogenase,.J Biol Chem.,.279,.25711,.2004.

21 Randt, C and Senger, H., Participation of the two photosystems in light dependent.

hydrogen.evolution.in.Scenedesmus obliquus, Photochem Photobiol.,.42,.553,.1985.

22 Healey, F.P., The mechanism of hydrogen evolution by Chlamydomonas moewusii,.

23 Ghirardi,.M.L et.al.,.Approaches.to.developing.biological.H 2

-photoproducing.organ-isms.and.processes,.Biochem Soc Trans.,.33,.70,.2005.

24 Melis, A et al., Sustained photobiological hydrogen gas production upon reversible.

Trang 17

28 Posewitz, M.C et al., Identification of genes required for hydrogenase activity in.

from.Chlamydomonas reinhardtii,.Arch Biochem Biophys.,.213,.37,.1982.

33 Happe, T and Naber, J.D., Isolation, characterization and N-terminal amino acid.

sequence of hydrogenase from green alga Chlamydomonas reinhardtii, Eur J

34

35 Tamagnini,.P et.al.,.Hydrogenase.in.Nostoc.sp strain.PCC.73102,.a.strain.lacking.a.

bidirectional.enzyme,.Appl Enviorn Microbiol.,.63,.1801,.1997.

36 Tamagnini, P et al., Diversity of cyanobacterial hydrogenase, a molecular biology.

45 Melis, A., Niedhardt, J., and Benemann, J.R., Dunaliella salina (Chlorophyta) with.

Trang 18

reducing.the.content.of.light.harvesting.pigment J Appl Phycol 11,.195,.1999.

52 Nakajima, Y and Ueda, T., The improvement of marine microalgal productivity by.

reducing.the.light-harvesting.pigment,.J Appl Phycol., 12,.285,.2000.

61 Laurinavichene, T.V et al., Demonstration of sustained hydrogen photoproduction.

by.immobilized,.sulfur-deprived.Chlamydomonas reinhardtii.cells,.Int J Hydrogen

62 Kruse, O et al., Improved photobiological H 2 production in engineered green algal.

cells, J Biol Chem.,.280,.34170,.2005.

63

Kosourov,.S.,.Seibert,.M.,.and.Ghirardi,.M.L.,.Effects.of.extracellular.pH.on.the.meta-bolic.pathways.in.sulfur-deprived,.H2-producing.Chlamydomonas reinhardtii.cultures,.

Trang 19

68 Tsygankov, A et al., Hydrogen photoproduction under continuous illumination by.

sulfur-deprived,.synchronous.Chlamydomonas reinhardtii.cultures,.Int J Hydrogen

alga.Platymonas subcordiformis,.Biochem Eng J.,.19,.69,.2004.

73 Guan,.Y et.al.,.Significant.enhancement.fo.photobiological.H 2 evolution.by

carbonylcy-anide.m-chlorophenylhydrazone.in.the.marine.green.alga.Platymonas subcordiformis,.

74 Torzillo, G and Vonshak, A., Biotechnology for algal mass cultivation, in Recent

9,.Science.Publishers,.Inc.,.Enfield,.NH,.2003,.p 45.

75 Amos, W.A., Updated Cost Analysis of Photobiological Hydrogen Production from

Energy.Laboratory,.Golden,.CO,.2004.

76 Akkerman, I et al., Photobiological hydrogen production: photochemical efficiency.

and.bioreactor.design,.in.Bio-methane and Bio-hydrogen,.Reith,.J.H.,.Wijfels,.R.H.,.

and.Barten,.H.,.Eds.,.Dutch.Biological.Hydrogen.Foundation,.Petten,.The.Netherlands,.

2003,.chap 6.

77 Palz, O and Scheibenbogen, K., Photobioreactors: design and performance with.

respect.to.light.energy.input,.in.Advances in Biochemical Engineering/Biotechnology,.

Scheper,.T.,.Ed.,.59,.Springer-Verlag,.Berlin,.1998,.p 123.

78 Casamajor, A.B and Parsons, R.E., Design Guide for Shallow Ponds, Section 2,.

UCRL-52385,.Rev 1,.Lawrence.Livermore.Laboratory,.Livermore,.CA,.January.1979.

79 Pruett,.M.L.,.Solar.Power.and.Energy.Storage.System,.U.S Patent.6,374,614,.2002.

80 Platt,.E.A and.Wood,.R.I.,.Engineering Feasibility of a 150 kW Irrigation Pumping

84 Blake, D.M and Kennedy, C.E., Hydrogen Reactor Development and Design for

Report, AOP.3.1.5,.Subtask.3.1.5.1,.National.Renewable.Energy.Laboratory,.Golden,.

CO,.2004 (For.a.copy,.e-mail.D Blake.at.dan_blake@nrel.gov.)

85 Farrah, M., Ultraviolet Aging of Transparent Plastic Coverplates for Solar Energy.

Equipment,.M.S thesis,.University.of.Lowell,.Lowell,.MA,.1983.

86 Anon.,.Materials in Solar Thermal Collectors: Identification of New Types of

,.Report.1996-11-08,.IEA.Solar.Heating.and.Cooling.Pro-gramme,.Brussels,.Belgium,.1996.

87 Raman,.R.,.Mantel,.S.,.Davidson,.J.,.Wu,.C.,.and.Jorgensen,.G.,.A.review.of.polymer.

materials.for.solar.water.heating.systems,.Trans ASME,.122,.92–100,.2000.

Trang 20

88 Anon.,.Solar Hot Water Heating Systems: Identification of Plastic Materials for Low

91 Jorgensen,.G and.Rangaprasad,.G.,.Ultraviolet Reflector Materials for Solar

92 Watt,.A.S and.Mann,.M.K.,.Evaluation of the Cost of Manufacturing a Housing Unit

,.Milestone.Report,.U.S DOE,.Hydro-gen.Program,.National.Renewable.Energy.Laboratory,.Golden,.CO,.1999 (For.a.copy,.

e-mail.D Blake.at.dan_blake@nrel.gov.)

93 Blake,.D.M and.Kennedy,.C.E.,.Hydrogen Reactor Development & Design for

AOP.3.1.5,.Subtask.3.1.5.1,.National.Renewable.Energy.Laboratory,.Golden,.CO,.2005

(For.a.copy,.e-mail.D Blake.at.dan_blake@nrel.gov.)

94 Massey,.L.K.,.Permeability Properties of Plastics and Elastomers: A Guide to

,.2nd.ed.,.Plastic.Design.Library/William.Andrew.Publish-ing,.Norwich,.NY,.2003,.Appendix.II.

95 Langowski,.H.-C.,.Flexible.barrier.materials.for.technical.applications,.Vacuum

96 Spath,.P.L and.Amos,.W.A.,.Assessment of Natural Gas Splitting with a Concentrating

Energy.Laboratory,.Golden,.CO,.2002.

Trang 22

Hydrogen Separation

U (Balu) Balachandran, T H Lee, and S E Dorris

ConTenTs

6.1 Introduction 147

6.2 Experimental 149

6.3 Results 149

6.4 Conclusions 155

Acknowledgments 156

References 156

. InTroduCTIon The.U.S Department.of.Energy’s.Office.of.Fossil.Energy.sponsors.a.wide.variety.of research,.development,.and.demonstration.programs.aimed.at.maximizing.the.use of vast domestic fossil resources and ensuring a fuel-diverse energy sector while responding.to.global.environmental.concerns Development.of.cost-effective,.mem- brane-based.reactor.and.separation.technologies.is.of.significant.interest.for.appli-cations in advanced fossil-based power and fuel technologies Because concerns over.global.climate.change.are.driving.nations.to.reduce.CO2.emissions,.hydrogen is.considered.the.fuel.of.choice.for.the.electric.power.and.transportation.industries

In.his.2003.State.of.the.Union.address,.President.Bush.announced.a.Hydrogen.Fuel

Initiative.to.develop.hydrogen.production.and.distribution.technologies.for.powering

fuel.cell.vehicles.and.stationary.fuel.cell.power.sources The.goal.of.this.initiative

is.to.lower.the.cost.of.hydrogen.enough.to.make.fuel.cell.cars.cost-competitive.with

conventional.gasoline-powered.vehicles.by.2010,.and.to.advance.the.methods.of.pro-ducing.hydrogen.from.renewable.resources,.nuclear.energy,.and.coal

As.part.of.the.effort.to.devise.cost-effective,.efficient.processes.for.producing

and.utilizing.hydrogen,.Argonne.National.Laboratory.(ANL).is.developing.dense,

hydrogen-permeable.membranes.for.separating.hydrogen.from.mixed.gases.at.com-

mercially.significant.fluxes.under.industrially.relevant.operating.conditions Of.par-ticular.interest.is.the.separation.of.hydrogen.from.product.streams.that.are.generated

.Work.supported.by.the.U.S Department.of.Energy,.Office.of.Fossil.Energy,.National.Energy.Technology.

Laboratory’s.Hydrogen.and.Gasification.Technologies.Program,.under.Contract.W-31-109-Eng-38.

Trang 24

).during.permeation.mea-surements was controlled with an MKS mass flow controller and was measured

using.a.Humonics.Field-Cal.570.flow.calibrator The.sweep.gas.was.analyzed.with

a Hewlett-Packard 6890 gas chromatograph Feed gases included dry or wet 4%

H2/balance.He,.100%.H2,.and.simulated.syngas.(66%.H2,.33%.CO,.and.1%.CO2) For

Trang 25

Compositions of gas mixtures used to Test stability of anl-e membranes

Composition of gas mixture gases used to Prepare mixture

Trang 26

after.sintering To.more.reproducibly.fabricate.ANL-3.membranes.without.intercon-

nected.porosity,.we.developed.ANL-3e.membranes,.which.contain.the.same.hydro-gen.transport.metal.as.ANL-3a.membranes.but.have.a.ceramic.matrix.that.densifies

more readily Figure.6.2 shows that the hydrogen flux through an ANL-3e

mem-brane,.like.that.through.an.ANL-3a9.or.-3b.membrane,10.increases.linearly.with.the

ever,.interfacial.reactions.may.become.rate.limiting The.highest.flux.for.the.ANL-3e membranes (19.0 cm3(STP)/min-cm2) was only slightly lower than that for an

ANL-3a.membrane.(20.cm3(STP)/min-cm2).12.However,.if.the.ceramic.matrix.only

Trang 27

800°C 700°C 600°C 500°C

Trang 28

ANL-3d (wet) ANL-3d (dry) ANL-2a (wet) ANL-2a (dry)

Trang 29

exposure but was stable thereafter At 900°C, the flux actually increased slightly.

earlier measurements with 51 ppm H2S, a mixture of UHP H2 and UHP He was

used.for.the.initial.reading,.then.UHP.H2.was.switched.to.an.H2S-containing.gas

900°C 800°C 700°C 600°C

0

5 10-7

1 10 -6 1.5 10 -6

Trang 30

alcohol,.from.one.face.to.the.other,.showed.that.the.sample.contained.interconnected

porosity.after.the.permeation.test.in.2,922.ppm.H2S;.alcohol.had.not.penetrated.the

sample before the permeation test Also, examination of the sample by scanning

electron microscopy indicated a loss of metal from the membrane surface Thus,

Ngày đăng: 13/08/2014, 16:21

TỪ KHÓA LIÊN QUAN