AlFe phase diagram showing intermetallic phases, such as FeAl3, Fe 2 Al 5 , FeAl 2 , and FeAl, which can form as separate layers in aluminized steel... Any of the methods mentioned in t
Trang 1capability.of.producing.smooth.and.uniform.coatings.on.the.inner.surface.of.small-diameter, high aspect ratio cylindrical components or other confined geometries
Atomic Percent Aluminum
1600 1538°C
1400 1394°C
1200
1000 912°C
800 770°C 600
1232
1169°C ~1160°C 1102°C
fIgure . AlFe phase diagram showing intermetallic phases, such as FeAl3, Fe 2 Al 5 ,
FeAl 2 , and FeAl, which can form as separate layers in aluminized steel.
Trang 2The advantages of aluminizing steels go beyond hydrogen barrier formation,.
however, as such surface treatments also provide additional corrosion protection
The.fusion.materials.community.continues.to.study.these.processing.methods.and
may.continue.to.be.the.main.driving.force.for.research.in.this.area.until.hydrogen
infrastructure.issues.become.more.important.27
fIgure . FeAl coating on the inner diameter of a 316SS tube that was deposited using
the EVE technique.
Trang 3area.of.hydrogen.permeation.barriers,.particularly.in.the.development.of.new.meth-ods that can provide barriers over large areas for anticipated hydrogen economy.
infrastructure needs Low-cost methods and better reproducibility are required
Hydrogen.remains.an.elusive.species.in.this.regard,.and.a.perfect.solution.is.appar-ently.very.challenging
referenCes
1 Forcey, K.S et al., Hydrogen transport and solubility in 316L and 1.4914 steels for.
fusion.reactor.applications,.Journal of Nuclear Materials,.160,.117–124.(1988).
2 Gibala,.R and.R.F Hehemann,.Eds.,.Hydrogen Embrittlement and Stress Corrosion
Cracking,.ASM,.Metals.Park,.OH,.1984,.p 324.
3 Honeycombe,.R.W.K.,.Steels:.microstructure.and.properties,.in.Metallurgy and
Materi-als Science,.R.W.K Honeycombe.and.P Hancock,.Eds.,.London:.Edward.Arnold,.1981.
fIgure . A typical aluminized steel surface following the polymer slurry method at
800˚C in air Any of the methods mentioned in this section about aluminized films will
pro-duce similar reaction layers Ease of processing and cost may dictate which method is
pre-ferred for a given application.
Trang 44 Hollenberg, G.W et al., Tritium/hydrogen barrier development, Fusion Engineering
and Design,.28,.190–208.(1995).
5 Roberts,.R.M et.al.,.Hydrogen.permeability.of.sintered.aluminum.oxide,.Journal of the
American Ceramic Society,.62,.495.(1979).
6 Yu, G.T and S.K Yen, Determination of the diffusion coefficient of proton in CVD.
gamma.aluminum.oxide.thin.films,.Surface and Coatings Technology,.166,.195.(2003).
7 Serra,.E et.al.,.Hydrogen.permeation.measurements.on.alumina,.Journal of the
Ameri-can Ceramic Society,.88,.15.(2005).
8 Brimhall,.J.L.,.E.P Simonen,.and.R.H Jones,.Data Base on Permeation, Diffusion,
and Concentration of Hydrogen Isotopes in Fusion Reactor Materials,.Fusion.Reactor.
Materials.Semiannual.Progress.Report,.DOE/ER-0313/16,.1994.
9 Forcey, K.S et al., Hydrogen transport and solubility in 316L and 1.4914 steels for.
fusion.reactor.applications,.Journal of Nuclear Materials,.160,.117.(1988).
10 Hollenberg, G.W et al., Tritium/hydrogen barrier development, Fusion Engineering
oxide,.Surface and Coatings Technology,.153,.114.(2002).
14 Song, R.G., Hydrogen permeation resistance of plasma-sprayed Al2O3 and Al2O3
-13wt%.TiO2.ceramic.coatings.on.austenitic.stainless.steel,.Surface and Coatings
Tech-nology,.168,.191.(2003).
15 Tazhibaeva,.I.L et.al.,.Hydrogen.permeation.through.steels.and.alloys.with.different.
protective.coatings,.Fusion.Engineering and Design,.51/52,.199.(2000).
16 Forcey, K.S et al., Formation of tritium permeation barriers by CVD, Journal of
Forcey,.K.S.,.D.K Ross,.and.L.G Earwalker,.Investigation.of.the.effectiveness.of.oxi-dised.Fecralloy.as.a.containment.for.tritium.in.fusion.reactors,.Zeitschrift fur
Physika-lische Chemie Neue Folge,.143,.213.(1985).
22 Shen,.J.-N et.al.,.Effect.of.alumina.film.prepared.by.pack.cementation.aluminizing.
and.thermal.oxidation.treatment.of.stainless.steel.on.hydrogen.permeation,.Yuanzineng
Kexue Jishu/Atomic Energy Science and Technology,.39,.73.(2005).
23 Aiello,.A et.al.,.Hydrogen.permeation.through.tritium.permeation.barrier.in.Pb-17Li,.
Fusion Engineering and Design,.58/59,.737.(2001).
24 Glasbrenner, H., A Perujo, and E Serra, Hydrogen permeation behavior of hot-dip.
aluminized.MANET.steel,.Fusion.Technology,.28,.1159.(1995).
25 Forcey,.K.S.,.D.K Ross,.and.C.H Wu,.Formation.of.hydrogen.permeation.barriers.on.
steels.by.aluminising,.Journal of Nuclear Materials,.182,.36.(1991).
Trang 530 Glasbrenner, H et al., The Formation of Aluminide Coatings on MANET Stainless
Steel as Tritium Permeation Barrier by Using a New Test Facility,.Vol 2,.Elsevier,.
Iordanova,.I.,.K.S Forcey,.and.M Surtchev,.X-ray.and.ion.beam.investigation.of.alu-mina.coatings.applied.on.DIN1.4914.martensitic.steel,.Nuclear Instruments and
Meth-ods in Physics Research, Section B: Beam Interactions with Materials and Atoms,.173,.
Trang 6for On-Board Hydrogen Storage
G J Thomas
ConTenTs
9.1 Introduction 191
9.2 Hydride.Properties.and.Hydrogen.Capacity 192
9.3 Alanates 197
9.4 Borohydrides 200
9.5 Destabilized.Borohydrides 201
9.6 Nitrogen.Systems 202
9.7 Other.Materials 204
9.8 Summary 205
References 205
In.concept,.reversible.hydrides.offer.a.direct.means.of.storing.hydrogen.on-board
fuel.cell.vehicles.and.would.be.compatible.with.a.hydrogen-based.transportation.fuel
infrastructure A.tank,.or.perhaps.more.accurately.a.storage.system,.containing.an
appropriate.hydride.material.would.remain.fixed.on.a.vehicle.and.could.be.refueled
simply.by.applying.an.overpressure.of.hydrogen.gas Once.filled,.the.hydrogen.gas
would.remain.at.the.equilibrium.pressure.for.the.particular.hydride.material,.chang-ing.only.with.temperature.changes.induced.in.the.storage.tank When.hydrogen.was
needed,.it.would.be.released.endothermically,.using.the.waste.heat.from.the.fuel.cell
(or.internal.combustion.engine.[ICE]).to.supply.the.required.energy This.approach
offers.certain.advantages.over.high-pressure.compressed.gas.tanks.and.cryogenic
liquid hydrogen systems—it is inherently stable with regard to hydrogen release,
it can operate at a low or moderate gas pressure, and it could eliminate some of
the.energy.costs.of.compression.or.liquefaction It.also.has.the.potential.to.achieve
volumetric.hydrogen.densities.much.higher.than.those.of.compressed.gas.and.even
liquid.hydrogen
In.practice,.however,.the.use.of.hydrides.for.on-board.hydrogen.storage.is.much
more.complicated.than.is.described.above,.and.a.number.of.issues.arise.when.one
attempts.to.choose.a.material.and.design.a.storage.system These.issues.arise.because
(1).many.hydride.materials.do.not.meet.minimal.on-board.storage.requirements.for
Trang 7The development of storage materials with properties that can encompass all.
of the required performance attributes for on-board hydrogen storage will be an
In 2001, Schlapbach and Zuttel published a paper on hydrogen storage4 and
included a plot of volumetric and gravimetric hydrogen densities in a variety of
Trang 8be released by thermolysis, but must be regenerated through a chemical process
This means that the spent fuel must be removed and processed externally These
Trang 9MgH 2
KBH 4 NaAlH 4
NaBH 4 LiAlH 4
LiBH 4
AlH 3 TiH 2
CaH 2 NaH
LiNH 2 (1)
fIgure . Plot of hydrogen weight fraction and hydrogen volume density for some
rep-resentative hydrogen storage materials For comparison, the current 2010 and 2015 DOE/
FreedomCAR and Fuel Partnership targets for system weight and system volume densities are
indicated by the dashed lines The densities of compressed hydrogen at ambient temperature
and liquid hydrogen at 20K are also shown.
Trang 11fuel.tank.is.nearly.empty)
Hydrogen transport in the high-capacity hydrides appears to be through the
movement.of.heavy.atoms,.complexes,.or.lattice.defects.rather.than.hydrogen.atoms,
with correspondingly higher activation energies for diffusion than for interstitial
hydrides In.Ti-.and.Zr-doped.NaAlH4.and.Na3AlH6,.for.example,.Sandrock.et.al.,13
Luo.and.Gross,14.and.Kiyobayashi.et.al.15
Trang 12In the following sections, specific materials will be discussed in more detail,.
Cu
Ag Cs
Be
Mg Ca Mn Fe
Ti Ga
In Ce
Ti
Zr Sn
M(Al H 4 )
M(Al H4)2
M(Al H4)3M(Al H 4 ) 4
fIgure . Trend of hydrogen weight fraction for various alanate compounds and cations
as a function of the molecular weight of the compound The trend is also representative of
other complex hydrides, such as borohydrides.
Trang 13available This.can.be.seen.in.more.detail.using.a.description.of.the.Na–Al–H.sys-tem.as.an.example
NaAlH4.decomposes.to.Na.and.Al,.releasing.its.hydrogen.through.the.following
reaction.chain:
NaAlH4.(+.Ti).≡.1/3.Na3AlH6.+.2/3.Al.+.H2 ∆H.=.37.kJ/mol.H2
1/3.Na3AlH6.(+.Ti).≡.NaH.+.Al.+.½.H2. ∆H.=.47.kJ/mol.H2
of Na alanate Others extended this approach of using co-dopants to consider
Ti, Zr, Fe combinations,32 adding graphite33 and other catalytic complexes.34,35
Although.some.improvements.have.been.reported.with.these.alternative.additives
or.catalysts,.the.overall.performance.of.the.sodium.alanate.materials.has.not.been
Trang 14significantly improved over the original Ti dopant initially reported by
Bogda-novic.and.Schwickardi.16
Considerable work has been directed toward other alanate compounds in an
effort to find materials with improved reversible properties (capacity, enthalpy,
Sachtler et al.47 studied the material phase space of Na-Li-Mg/AlH4 using an
8-reactor system to measure the reversible hydrogen content in NaAlH4, LiAlH4,
approach Theoretical estimates of material stability, if accurate, can be of great
value to experimental efforts by eliminating unstable candidates and identifying
Trang 16.was.also.included.in.the.mixtures They.found.that.the.effec-tive enthalpy was reduced significantly, from ~69 kJ/mol H2 for the borohydride.
decomposition.alone.(to.LiH.and.H2).down.to.~45.kJ/mol.H2.when.the.borohydride
reacted.with.MgH2.to.form.MgB2.and.LiH The.lower.enthalpy.value.results.in.an
equilibrium.hydrogen.overpressure.of.1.bar.at.~200°C,.as.compared.to.~400°C.for
the.borohydride
Trang 18The reaction yielded a reversible hydrogen capacity of 6.5 wt% If the imide.
al.80–83.and.others84,85.have.looked.at.mixtures.of.Li.amide.with.Li.alanate.and.with
Li borohydride DFT calculations86,87 suggest that these systems will behave in a
Trang 19Another experimental study on the same material system was performed by.
Trang 20the.increased.level.of.government.funding.in.the.U.S.,.Europe,.and.Asia.for.hydro-gen storage materials Industrial R&D has significantly increased as well
Corre-spondingly, much progress has been achieved, particularly toward understanding
2 Sandrock, G., Hydrogen-metal systems, in.Hydrogen Energy System, Utilization of
Hydrogen and Future Aspects,.Y Yurum,.ed.,.NATO.ASI.Series,.The.Netherlands:.
Kluwer.Publishing,.Dordrecht.
3 Sandrock, G., Applications of hydrides, in.Hydrogen Energy System, Utilization of
Hydrogen and Future Aspects,.Y Yurum,.Ed.,.NATO.ASI.Series,.The.Netherlands:.
Trang 218 Grochala,.W and.Edwards,.P.,.Chem Rev.,.104,.1283,.2004.
13 Sandrock,.G., Gross,.K., and.Thomas,.G.,.J Alloys Comp.,.339,.299,.2002.
14 Luo,.W and.Gross,.K.J.,.J Alloys Comp.,.385,.224,.2004.
15 Jensen,.C.M.,.Kiyobayashi,.T.,.Sun,.D.,.and.Sauara,.A.,.225th.ACS.National.Meeting
2003.
16 Bogdanovic,.B and.Schwickardi,.M J Alloys Comp.,.253/254,.1,.1997.
17 Jensen,.C.M.,.Zidan,.R.,.Mariels,.N.,.Hee,.A.G.,.and.Hagen,.C Int J Hydrogen Energy,.
22 Gross,.K.J.,.Sandrock,.G.,.and.Thomas,.G.,.J Alloys Comp.,.330/332,.691,.2002.
23 Thomas,.G.J.,.Gross,.K.,.and.Sandrock,.G., J Alloys Comp.,.330,.2002.
24
Brinks,.H.W.,.Jensen,.C.M.,.Srinivasan,.S.S.,.Hauback,.B.C.,.Blanchard,.D.,.and.Mur-phy,.K., J Alloys Comp.,.376,.215,.2004.
25 Walters,.R.T and.Scogin,.J.H J Alloys Comp.,.379,.135,.2004.
26 Majer,.G Stanik,.E.,.Valiente.Banuet,.L.E.,.Grinberg,.F.,.Kircher,.O.,.and.Fichtner,.M.,
J Alloys Comp.,.404–406,.738,.2005.
27
Leon,.A.,.Kircher,.O.,.Rosner,.H.,.Decamps,.B.,.Leroy,.E.,.Fichtner,.M.,.and.Percheron-Guegan,.A., J Alloys Comp.,.414,.190,.2006.
28 Graetz,.J.,.Ignatov,.A.Y.,.Tyson,.T.A.,.Reilly,.J.J.,.and.Johnson,.J.,.in.Mater Res Soc
Conf Proceedings,.2005,.p 837.
29 Chaudhuri,.S and.Muckerman,.J.T.,.J Phys Chem B,.109,.6952,.2005.
30 Chaudhuri,.S.,.Graetz,.J.,.Ignatov,.A.,.Reilly,.J.J.,.and.Muckerman,.J.T,.J Am Chem
Soc.,.2006.
31 Iniguez,.J and.Yildirim,.T., Phys Rev B,.0604472,.2006.
32 Wang,.J.,.Ebner,.A.D.,.Zidan,.R.,.and.Ritter,.J.A.,.J Alloys Comp.,.391,.245,.2005.
33 Wang,.J.,.Ebner,.A.D.,.Prozorov,.T.,.Zidan,.R.,.and.Ritter,.J.A.,.J Alloys Comp.,.395,.
252,.2005.
34 Zaluska,.A and.Zaluski,.L.,.J Alloys Comp.,.404–406,.706,.2005.
35 Resan,.M.,.Hampton,.M.D Lomness,.J.K.,.and.Slattery,.D.K.,.Int J Hydrogen Energy,.
30,.1417,.2005.
36 Lovvik,.O.M and.Opalka,.S.M.,.Appl Phys Lett.,.88,.161917-1-3,.2006.
37 Hauback,.B.C.,.Brinks,.H.W.,.and.Fjellvag,.H., J Alloys Comp.,.346,.184,.2002.
38 Brinks,.H.W.,.Hauback,.B.C.,.Norby,.P.,.and.Fjellvag,.H.,.J Alloys Comp.,.351,.222,.
2003.
39 Fichtner,.M.,.Fuhr,.O.,.and.Kircher,.O.,.J Alloys Comp.,.356,.418,.2003.
40 Morioka,.H.,.Kakizaki,.K.,.Chung,.S.C.,.and.Yamada,.A.,.J Alloys Comp.,.353,.310,.
2003.
41 Lovvik,.O.M and.Opalka,.S.M., Phys Rev B,.69,.134117,.2004.
Trang 2242 Fossdal,.A.,.Brinks,.H.W.,.Fichtner,.M.,.and.Hauback,.B.C.,.J Alloys Comp.,.404–406,.
752,.2005.
43 Fossdal,.A.,.Brinks,.H.W.,.Fichtner,.M.,.and.Hauback,.B.C.,.J Alloys Comp.,.387,.47,.
2005.
44 Graetz,.J.,.Lee,.Y.,.Reilly,.J.J.,.Park,.S.,.and.Vogt,.T.,.Phys Rev B,.71,.184115,.2005.
45 Resan,.M.,.Hampton,.M.D.,.Lomness,.J.K.,.and.Slattery,.D.K.,.Int J Hydrogen Energy,.
52 Chung,.S.C and.Morioka,.H.,.J Alloys Comp.,.372,.92,.2004.
53 Varin,.R.A.,.Chiu,.C.,.Czujko,.T.,.and.Wronski,.Z.,.J Alloys Comp.,.439(1-2),.302-311,.
56 Graetz,.J and.Reilly,.J.J.,.J Alloys Comp.,.2006.
57 Vajeeston,.P.,.Ravindran,.P.,.Kjekshus,.A.,.and.Fjellvag,.H.,.J Alloys Comp.,.vol 404,.
63 Srinivasau,.S and.Jensen,.C.,.Proc Mater Res Soc.,.837,.101-107,.2005.
64 Varin,.R.A and.Chiu,.Ch.,.J Alloys Comp.,.397,.276,.2005.
65 Reilly,.J.J and.Wiswall,.R.H., Inorg Chem.,.6,.2220,.1967;.7,.2254,.1968.
66 Vajo,.J.J and.Skeith,.S.L.,.J Phys Chem B,.109,.3719,.2005.
Trang 2376 Luo,.W and.Ronnebro,.E.,.J Alloys Comp.,.404–406,.392,.2005.
77 Luo,.W and.Sickafoose,.S.,.J Alloys Comp.,.407,.274,.2006.
78 Lohstroh,.W and.Fichtner,.M.,.J Alloys Comp.,.in.press,.2006.
and.Orimo,.S.,.J Power Sources,.155,.447-455,.2006.
84 Ichikawa,.T.,.Isobe,.S.,.N.,.Hanada,.N.,.and.Fujii,.H.,.J Alloys Comp.,.365,.271,.2004.
85 Hu,.Y.H.,.Yu,.N.Y.,.and.Ruckenstein,.E.,.Ind Eng Chem Res.,.43,.4174,.2004.
86 Miwa,.K.,.Ohba,.N.,.Towata,.S.,.Nakamori,.Y.,.and.Orimo,.S.,.Phys Rev B,.69,.245120,.
90 Zaluska,.A.,.Zaluska,.L.,.and.Strom-Olsen,.J.O.,.J Alloys Comp.,.307,.157,.2000.
91 Wagemans,.R.W.P et.al.,.J Am Chem Soc.,.127,.16675,.2005.
92 Graetz,.J and.Reilly,.J.J.,.Scripta Material,.2006.