in.Proceedings of the Unified International Technical Conference on Refractories, UNITECR ’05,.Orlando,.FL,.November.2005,.. Refractories Applications and News,.. reformer.vessels,.in.Pr
Trang 1high temperature black liquor gasifiers, in.Proceedings of the Unified International
Technical Conference on Refractories, UNITECR ’05,.Orlando,.FL,.November.2005,.
4.pp.
28 Taber, W.A., Refractories for Gasification, Refractories Applications and News, 8,.
18–22,.2003.
29 U.S Department.of.Energy,.Gasification Markets and Technologies — Present and
Future: An Industry Perspective,.Report.0447,.July.2002,.pp 1–53.
30 Johnson, R.C and Crowley, M.S., State of the art refractory linings for hydrogen.
reformer.vessels,.in.Proceedings of the Unified International Technical Conference on
Refractories, UNITECR ’05,.Orlando,.FL,.November.2005,.4.pp.
Trang 2Electrolysis Cells
Paul A Lessing
ConTenTs
2.1 Background.of.Hydrogen.Generation.via.Electrolysis 37
2.2 Low-Temperature.Electrolysis.of.Water.Solutions 38
2.3 Low-Temperature.PEM-Type.Electrolyzers 41
2.4 Low-Temperature.Inorganic.Membrane.Electrolyzers 42
2.5 Moderate-Temperature.Inorganic.Membrane.Electrolyzers 44
2.5.1 Moderate-Temperature.Oxygen.Ion.Conductors 46
2.5.2 Moderate-Temperature.Proton.Conductors 48
2.5.3 Moderate-Temperature.Bipolar.Plates.(Interconnects) 50
2.6 High-Temperature.Inorganic.Membrane.Electrolyzers 52
2.6.1 High-Temperature.Oxygen.Ion.Conductors 52
Acknowledgments 53
References 54
. baCkground of hydrogen
generaTIon vIa eleCTrolysIs
Hydrogen.generation.can.be.accomplished.via.traditional.DC.electrolysis.of.aque-ous.solutions.at.temperatures.less.than.about.100°C However,.electrolysis.of.steam
can.also.be.accomplished.at.higher.temperatures.at.the.cathode.of.electrolytic.cells
utilizing.solid.membranes The.solid.membranes.typically.are.electronic.insulators
and.need.to.be.gas-tight.(hermetic),.but.have.the.special.property.of.being.able.to
conduct.ions.via.fast.diffusion.through.the.solid Generally.the.cells.(cathode/elec-trolyte/anode) are known by the chemical name of their solid electrolytes It has
been.found.for.some.operating.hydrogen.fuel.cell.anode/electrolyte/cathode.systems
that.the.fuel.cell.reactions.at.the.electrodes.are.reversible.and.can.be.operated.in.an
electrolysis.mode However,.reversibility.has.not.been.demonstrated.for.all.cathode/
electrolyte/anode.combinations
Hydrogen production via conventional electrolysis largely depends upon the
availability.of.cheap.electricity.(e.g.,.from.hydroelectric.generators) Consequently,
only.about.5%.of.the.world.hydrogen.production.is.via.electrolysis The.only.com-plete.hydrogen.production.process.that.is.free.of.CO2.emissions.is.water.electrolysis
(if.the.electricity.is.derived.from.nuclear.or.renewable.fuels) However,.97%.of.the
hydrogen.currently.produced.is.ultimately.derived.from.fossil.energy Currently,.the
Trang 3most.widely.used.and.economical.process.is.steam.reforming.of.natural.gas,.a.pro-cess.that.results.in.CO2.emissions
. loW-TemPeraTure eleCTrolysIs of WaTer soluTIons
1.229.V In.addition,.heat.is.needed.for.the.operation.of.an.electrolysis.cell If.the
heat.energy.is.supplied.in.the.form.of.electrical.energy,.then.the.thermal.potential
is.0.252.V.(at.standard.conditions),.and.this.voltage.must.be.added.to.Erev.(i.e.,.add
entropic term T∆S to ∆G) The (theoretical) decomposition potential for water at
standard conditions (for ∆H.≅.∆H°).is.then 1.480 V This.is.shown in.figure.2.1
Anode.and.cathode.reactions.for.electrolysis.(see.figure.2.1).are:
energy consumption), many different catalytic materials have been examined for
use as anodes or cathodes (or coatings on underlying electrodes) Research was
conducted.in.Germany.in.the.1980s.and.1990s.on.advanced.materials.and.designs
Trang 4to replace the conventional asbestos diaphragm (that dissolves in caustic KOH at
temperatures above 90°C) with polymer-bonded (PTFE-type) composites These
Trang 5fIgure . (a).Schematic.of.water.(alkaline).electrolysis (b).Two.large.(200.Nm3
/h).atmo-spheric,.alkaline,.multicell.electrolysis.stacks.generating.hydrogen.at.the.Norsk.Hydro.Company.
Trang 6Research is currently being conducted into PEM-type membranes that have
Trang 7to decompose two water molecules to simultaneously generate one molecule of.
hydrogen and one of hydrogen peroxide (used in paper/pulp and chemical
Trang 9.pulsed-laser.plasma.evap-oration,46 or chemical vapor deposition (CVD).47 Very thin electrolytes generally
Trang 10dc plasma torch
cooling water out
gas inlet liquid reactant atomizer
Trang 11Over the last decade there has been significant R&D to reduce the operating.
or occasionally Ba on the A site.50 Other studies have been conducted to measure
doped.LaGaO3’s.electronic.conductivity51–53.and.develop.suitable.electrodes.54–57
Trang 12et.al.67.has.also.reported.that.doped.PrGaO3.is.a.fast.oxygen.ion.conductor,.but.it.does
crystallographic.and.chemical.stability.problems.that.have.prevented.implementa-tion.in.practical.long-lived.cells As.reviewed.by.Azad.et.al.,74.α-Bi2O3.(monoclinic)
is.stable.below.730°C,.while.the.very.high.conductivity.δ-Bi2O3.(cubic,.CaF2.type).is
by alkaline–earth oxide dopants (e.g., CaO-Bi2O3, SrO-Bi2O3, or BaO-Bi2O3)76 or
partial substitution of various metal ions for vanadium These compounds were
termed BIMEVOX Investigations of fabrication with possible application as an
electrolyte,.with.particular.interest.in.copper.substituted.material.(BICUVOX,.e.g.,
Be2V0.9Cu0.1O5.35),79.followed There.is.some.electrical.conductivity.data.measured
be.an.indication.of.increased.electronic.conductivity82.(electronic.shorting.of.cells)
Trang 13manganites, other perovksite compositions have been proposed for air electrodes.
(La0.8Sr0.2Fe0.8Co0.2O3-δ.and.LaFe0.5Ni0.5O3-δ).83
Trang 14species.is.a.proton.bound.to.an.oxygen.ion.in.the.lattice However,.the.pro-Twenty.years.ago,.Iwahara.et.al.87.introduced.doped.(Y,.Yb,.Sc).SrCeO3
Trang 15crystallites.100.Kofstad.and.Bredesen101.point.out.that.a.Cr.problem.may.also.exist.at
Trang 16Oxidation in H2–H2O mixtures could be a long-term problem for uncoated.
metallic.bipolar.electrolyzer.plates.with.low.H2.content.gas Horita.et.al.105
Trang 17. hIgh-TemPeraTure InorganIC
membrane eleCTrolyzers
2.6.1 h iGh -t emperature O xyGen i On C OnduCtOrS
The most common high-temperature cells being investigated are solid-oxide fuel
Some interdiffusion and formation of nonconductive compounds (e.g., La2Zr2O7)
has.been.reported.118.These.interactions.are.more.severe.at.high.temperatures119.and
Trang 18High-steam electrolysis
unit
Heat
He High-
temperature heat exchanger
Recuperator Primary heat rejection
He
HP compressor
LP compressor
Gas turbine
Trang 19in.New Materials for Electrochemical Systems IV Extended Abstracts of the Fourth
International Symposium on New Materials for Electrochemical Systems,.Montreal,.
Quebec,.Canada,.July.9–13,.2001,.pp 278–280.
11 Linkous, C.A et al Development of new proton exchange membrane electrolytes.
for water electrolysis at higher temperatures,.Int J Hydrogen Energy,.23,.525–529.
with proton exchange membrane (PEM) using sea water and fundamental study of.
hybrid.system.with.PV-ED-FC,.Mem Fac Eng.,.31,.213–218.(2002).
Trang 2021 Giner Electrochemical Systems, LLC, 89 Rumford Ave., Newton, MA 02466,.
Trang 2144 Henne,.R.H et.al.,.Light-Weight.SOFCs.for.Automotive.Auxiliary.Power.Units,.paper.
presented.at.the.2nd.International.Conference.on.Fuel.Cell.Science,.Engineering.and.
Technology,.Rochester,.NY,.June.14–16,.2004.
45
Wang,.L.S et.al.,.Sputter.deposition.of.yttria-stabilized.zirconia.and.silver.cermet.elec-trodes.for.SOFC.applications,.Solid State Ionics,.52,.261–267.(1992).
46 Chu,.W.F.,.Thin-.and.thick-film.solid.ionic.devices,.Solid State Ionics,.52,.243–248.
49 Kurumada,.M.,.Ito,.A.,.and.Fujie,.Y.,.Preparation.of.La2-xSrxGa0.8Mg0.2O3-δ.electrolyte.
for.solid.oxide.fuel.cell.by.citrate.method.using.industrial.raw.materials,.J Ceram Soc
Jpn.,.111,.200–204.(2003).
50 Choi, S.M., et al., Oxygen ion conductivity and cell performance of La0.9Ba0.1Ga1–
x MgxO3-δ.electrolyte,.Solid State Ionics,.131,.221–228.(2000).
51 Kharton, V.V et al., Ionic and p-type electronic conduction in LaGa(Mg,Nb)O3-δ.
perovksites,.Solid State Ionics,.128,.79–90.(2000).
52 Maffei, N and de Silveira, G., Interfacial layers in tape cast anoe-supported doped.
lanthanum.gallate.SOFC.elements,.Solid.State Ionics,.159,.209–216.(2003).
53 Kim, J.H and Yoo, H.I., Partial electronic conductivity and electrolytic domain of.
La0.9Sr0.1Ga0.8Mg0.2O3-δ,.Solid State Ionics,.140,.105–113.(2001).
Kuroda,.K et.al.,.Characterization.of.solid.oxide.fuel.cell.using.doped.lanthanum.gal-late,.Solid State Ionics,.132,.199–208.(2000).
60 Ma,.X et.al.,.The.power.of.plasma,.Ceramic Industry,.June.2004,.pp 25–28.
61 Pengnian,.H et.al.,.Interfacial.reaction.between.nickel.oxide.and.lanthanum.gallate.
during sintering and its effect on conductivity,.J Am Ceram Soc.,.82,.2402–2406.
(1999).
62 Maffei,.N and.de.Silveira,.G.,.Interfacial.layers.in.tape.cast.anode-supported.doped.
lanthanum.gallate.SOFC.elements,.Solid State Ionics,.159,.209–216.(2003).
63 Huang, K.G et al., Increasing power density of LSGM-based solid oxide fuel cells.
using.new.anode.materials,.J Electrochem Soc.,.148,.A788–A794.(2001).
Trang 2267 Ishihara, T et al., Oxide ion conductivity in doubly doped PrGaO3 perovskite-type.
oxide,.J Electrochem Soc.,.146,.1643–1649.(1999).
68 Maricle,.D.L et.al.,.Enhanced.ceria:.a.low-temperature.SOFC.electrolyte,.Solid State
Ionics,.52,.173–182.(1992).
69 Kharton,.V.V et.al.,.Ceria-based.materials.for.solid.oxide.fuel.cells,.J Mater Sci.,.36,.
1105–1117.(2001).
70 Hidenori, Y et al., High temperature fuel cell with ceria-yttria solid electrolyte, J
Electrochem Soc Solid-State Sci Technol.,.2077–2080.(1988).
Azad,.A.M.,.Larose,.S.,.and.Akbar,.S.A.,.Review.bismuth.oxide-based.solid.electro-lytes.for.fuel.cells,.J Mater Sci.,.29,.4135–4151.(1994).
75 Fung, K.Z et al., Massive transformation in the Y2Oe-Bi2O3 system, J Am Ceram
Soc.,.77,.1638–1648.(1994).
76 Fung,.K.Z et.al.,.Thermodynamic.and.kinetic.considerations.for.Bi2O3
-based.electro-lytes,.Solid State Ionics,.52,.199–211.(1992).
77 Joshi, A.V et al., Phase stability and oxygen transport characteristics of yttria- and.
niobia-stabilized.bismuth.oxide,.J Mater Sci.,.25,.1237–1245.(1990).
84 Setoguchi, T et al., Effects of anode materials and fuel on anodic reaction of solid.
oxide.fuel-cells,.J Electrochem Soc.,.139,.2875–2880.(1993).
Trang 2391 Chen, F.L et al., Preparation of Nd-doped BaCeO3 proton-conducting ceramic and.
its.electrical.properties.in.different.atmospheres,.J Eur Ceram Soc.,.18,.1389–1395.
drain.electrochemical.applications,.Solid State Ionics,.145,.295–306.(2001).
95 Kreuer,.K.D.,.Proton-conducting.oxides,.Annu Rev Mater Res.,.33,.333–359.(2003).
96 Hassan, D et al., Proton-conducting ceramics as electrode/electrolyte materials for.
SOFC’s Part.I Preparation,.mechanical.and.thermal.properties.of.sintered.bodies,.J
Eur Ceram Soc.,.23,.221–228.(2003).
97 Fehringer, G et al., Proton-conducting ceramics as electrode/electrolyte: materials.
for SOFCs: preparation, mechanical and thermal-mechanical properties of thermal.
sprayed.coatings,.material.combination.and.stacks,.J Eur Ceram Soc.,.24,.705–715.
.103 Larring, Y and Norby, T., Spinel and perovskite functional layers between Plansee.
metallic.interconnect.(Cr-5.wt%.Fe-1.wt%.Y2O3).in.ceramic.(La0.85Sr0.15)0.91MnO3
.cath-ode.materials.for.solid.oxide.fuel.cells,.J Electrochem Soc.,.147,.3251–3256.(2000).
.104 Kung, S.C et al., Performance of Metallic Interconnect in Solid-Oxide Fuel Cells,.
Trang 24113 Subbarao,.E and.Maiti,.H.S.,.Solid.electrolytes.with.oxygen.ion.conduction,.Solid State
Ionics, 11,.317–338.(1984).
114
Kilner,.J.A and.Brook,.R.J.,.A.study.of.oxygen.ion.conductivity.in.doped.non-stoichio-metric.oxides,.Solid State Ionics, 6,.237–252.(1982).
115 USGS,.Year.2000.data:.Sc2O3.(99.99%.pure).$3,000/kg,.Sc2O3.(99.9%.pure).$700/kg;.
119 Misuyasu, H et al., Microscopic analysis of lanthanum strontium manganite
yttria-stabilized.zirconia.interface,.Solid State Ionics, 100,.11–15.(1997).
.126. Very High Temperature Reactor (VHTR) Survey of Materials Research and
Develop-ment Needs to Support Early DeployDevelop-ment,.INL/EXT-03-004-141,.January.31,.2003.
127. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant,.
INEEL/EXT-04-01816,.Independent.Technology.Review.Group,.June.30,.2004.
.128 Ion, S et al., Pebble Bed Modular Reactor: The First Generation IV Reactor to Be.
Constructed,.paper.presented.at.the.World.Nuclear.Association.Annual.Symposium,.
London,.September.3–5.
Trang 26Electrolysis
S Elangovan and J Hartvigsen
ConTenTs
3.1 Background 61
3.2 Materials.and.Design 62
3.2.1 Series-Connected.Tubes 63
3.2.2 Tubular.Stack.Design 65
3.2.3 Planar.Stack.Design 65
3.3 Modes.of.Operation 66
3.4 Alternative.Materials.for.High-Temperature.Electrolysis 69
3.5 Advanced.Concepts.for.High-Temperature.Electrolysis 73
3.5.1 Natural.Gas-Assisted.Mode 73
3.5.2 Hybrid.SOFC–SEOC.Stacks 74
3.5.3 Integration.of.Primary.Energy.Sources.with.High-Temperature Electrolysis.Process 74
3.6 Materials.Challenges 75
3.7 Summary 76
Acknowledgments 78
References 78
. baCkground Emphasis.on.energy.security.issues.has.brought.much.needed.attention.to.economic production.of.hydrogen.as.the.secondary.energy.carrier.for.nonelectrical.markets
The.recent.focus.on.hydrogen.comes.from.its.environmentally.benign.aspect How-ever,.much.of.the.hydrogen.currently.produced.is.used.near.the.production.facility
for.chemical.synthesis,.such.as.ammonia.and.methanol.production,.and.for.upgrad-ing.as.well.as.desulfurization.of.crude.oil While.steam.reforming.of.methane.is.the
current.method.of.production.of.hydrogen,.the.fossil.fuel.feed.consumes.nonrenew-able fuel while emitting greenhouse gases Thus, in the long run, efficient,
envi-ronmentally.friendly,.and.economic.means.of.hydrogen.production.using.renewable
energy.need.to.be.developed Additionally,.when.excess.energy.production.capacity
exists,.for.example,.during.off-peak.hours,.efficient.generation.of.hydrogen.may.be
an.option.to.make.an.effective.use.of.the.investment.in.power.generation.infrastruc-ture Steam electrolysis, particularly using high-temperature ceramic membrane
processes,.provides.an.attractive.option.for.efficient.generation.of.ultra.high.purity
(UHP).hydrogen
Trang 28fuel.(hydrogen).electrodes,.respectively
3.2.1 S erieS -C OnneCted t ubeS
The earliest large-scale high-temperature electrolysis work was done at Dornier
System Gmbh in Germany.1 The cell used traditional SOFC materials such as 9
mol% yttria-doped zirconia (YSZ) as the electrolyte, a cermet mixture of 50:50
H (total energy for electrolysis)
G (electrical energy for electrolysis)
Q (heat of electrolysis)
fIgure . Energy.input.required.for.steam.electrolysis.