1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Materials for the Hydrogen Economy (2009) Part 11 ppsx

30 299 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 1,29 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

SEM analysis of an MEA sample from a failed stack showing the ruptured membrane as a result of mechanical failures... fIgure .0 SEM analysis of an MEA sample from a failed stack showing

Trang 1

edges.were.first.introduced.by.Gore,.and.they.are.now.available.from.all.major.MEA

suppliers

Reinforced membranes have been shown to delay crack initiation and

propa-gation.232–239 PTFE-based porous films, woven fibers, and microfibers are widely

fIgure .   SEM analysis of an MEA sample from a failed stack showing the ruptured

membrane as a result of mechanical failures.

Trang 2

but with improved durability Johnson Matthey presented a reinforced membrane.

that.gave.a.sixfold.increase.in.durability.for.a.30-cell.stack.operated.under.dynamic

operation.conditions.239.DuPont.recently.introduced.Nafion.XL™

,.a.reinforced.mem-

brane.made.from.a.chemically.stabilized.ionomer.(see.below) It.has.achieved.a.10-fold.increase.in.lifetime.under.low.RH.and.potential.cycling.conditions.242

... Improvement in Pfsa Chemical stability

through end-group modification

Peroxide radicals from decomposition of H2O2 are believed to be responsible for

Rf-CF2·.+.·OH.→.[Rf-CF2OH] → Rf-COF.+.HF (20)

Trang 3

fIgure .0   SEM analysis of an MEA sample from a failed stack showing the thinned

membrane (from 45 μm to ~9 μm).

Table .

rh effect on the frr and the rate of voltage degradation at °C, 0. a/

cm  , and ./.0 reformate-air stoichiometry

rh(%) Testing Time(h) Total

frr(0–/g·h·cm)

degradation rate(μv/h)

Trang 4

... modification of Pfsa membrane

Many.research.groups.are.actively.engaged.in.modifying.existing.membrane.struc-tures.to.improve.durability.and.expand.the.range.of.operating.temperatures.while

retaining the desirable membrane properties.30,240,245,246.However, chemical

modi-fication is largely limited to the side chains because the perfluorinated backbone

Trang 5

using.air.and.oxygen,.respectively.267

Although much progress has been made on PFSA-based membranes, there

remain many challenges For automotive applications, a membrane is required to

12.3.2 p OlybenZimidaZOle m embrane m aterialS

Plug Power, working with its European partners PEMEAS (now BASF Fuel Cell

Trang 7

F2C CF

F2C CF

F2C CF

F2C CF

R n

Trang 8

.by.Solvay.Advanced.Polymers.and.vari-ous types of poly(arylene ether and ether ketone)s under the trade name PEEK™

by Victrex® In most cases, the sulfonated groups are introduced by subjecting

the polyarylenes to direct electrophilic sulfonation Others are prepared through

Trang 10

. gas dIffusIon layer maTerIals

external contact angle measurements were more indicative of the GDL surface

roughness than the capillary forces in the GDL pores (which reflects the real

measurement of water removal capacity).315 They presented a new method for

P N O

R

SO 3

P N O

Trang 12

water from the system To fulfill these functions, an ideal bipolar plate material

should have minimal gas permeability, high electrical conductivity, high thermal

material for its good electron conductivity, low density, and high corrosion

resis-tance.(e.g.,.680.S/cm.and.1.78.g/cm3.for.POCO.AXF-5Q).329.However,.due.to.its.poor

composite.should.have.good.thermal.stability,.high.chemical.stability,.and.low.per-meability to the reactant gases The electrical conductivity of graphite composite

materials is lower than that of a pure graphite material (with the extent

Trang 13

fIgure .   Comparison of liquid water transport for two 50-cm2 single-cell PEM fuel

cells using commercial graphite composite bipolar plates: (a) surface modified and (b) as

received (0.1 A/cm 2 , 1.5/2.0 H 2 –air stoichiometry, 100% RH).

Trang 14

Silva’s study showed that although Ni-based alloys have a contact resistance.

comparable to that of graphite, their corrosion resistance in an acidic medium is

hydrophilic/hydrophobic character.4 Stanic and Hoberecht linked membrane edge

fIgure .   Impact of system components on fuel cell performance (From Du, B et al.,

JOM, 58, 44, 2006 With permission.)

Trang 15

failure and pinhole formation, two primary causes of premature stack failure, to.

materials For example, we found that a plate sample with a particular

combina-tion of graphitic particles and resin binders emitted 7.2 and 1.7 µg/g plate·day of

Trang 18

6 Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Handbook of Fuel Cells:

Fun-damentals, Technology, and Applications,.1st.ed.,.John.Wiley.&.Sons,.West.Sussex,.

Trang 19

9 Bagotzky, V.S., Osetrova, N.V., and Skundin, A.M., Fuel cells: state-of-the-art and.

in.polymer.electrolyte.fuel.cell.technology,.in.Proceedings of the 202nd ECS Meeting:

Proton Conducting Membrane Fuel Cells III,.Salt.Lake.City,.UT,.October.20–25,.2002.

19 Antolini, E., Formation, microstructural characteristics and stability of carbon

sup-ported.platinum.catalysts.for.low.temperature.fuel.cells,.J Mater Sci.,.38,.2995,.2003.

20 Antolini,.E.,.Formation.of.carbon-supported.PtM.alloys.for.low.temperature.fuel.cells:.

a.review,.Mater Chem Phys.,.78,.563,.2003.

21 Litster,.S and.McLean,.G.,.PEM.fuel.cell.electrodes,.J Power Sources,.130,.61,.2003.

22 Ralph, T.R and Hogarth, M.P., Catalysis for low temperature fuel cell Part I The.

cathode.challenges,.Platinum Metal Rev.,.46,.3,.2002.

30 Alberti, G and Casciola, M., Composite membranes for medium-temperature PEM.

fuel.cells,.Ann Rev Mater Sci.,.33,.129,.2003.

Trang 20

34 Hermann, A., Chaudhuri, T., and Spagnol, P., Bipolar plates for PEM fuel cells: a.

review,.Int J Hydrogen Energy,.30,.1297,.2005.

and.oxidation.of.H2,.and.the.role.of.chemisorbed.H,.Electrochim Acta,.47,.3571,.2002.

43 Du, B et al., DDP 732 Physical Properties of Current MEAS, Plug Power internal.

report,.April,.2003.

44 Gasteiger,.H.A.,.Panels,.J.E.,.and.Yan,.S.G.,.Dependence.of.PEM.fuel.cell.performance.

on.catalyst.loading,.J Power Sources,.127,.162,.2004.

45 Du,.B.,.BNL Low-Pt Anode Catalyst Performance

Evaluation,.Plug.Power.report.sub-mitted.to.Brookhaven.National.Laboratories,.Upton,.NY,.2005.

46 Adzic, R et al., Low Pt loading fuel cell electrocatalysts, 271, 2006 Annual

Merit-Review and Peer Evaluation Report, DOE Hydrogen, Fuel Cells and Infrastructure.

53 Venkataraman, R., Kunz, H.R., and Fenton, J.M., Development of new CO tolerant.

ternary.anode.catalysts.for.proton.exchange.membrane.fuel.cells,.J Electrochem Soc.,.

150,.A278,.2003.

54 Park,.K.-W et.al.,.PtRu-WO3.nanostructured.alloy.electrode.for.use.in.thin-film.fuel.

cells,.Appl Phys Lett.,.82,.1090,.2003.

55 Hwu, H.H et al., Potential application of tungsten carbides as electrocatalysts 1

Decomposition of methanol over carbide-modified W(111), J Phys Chem B, 105,.

10037,.2001.

56

Chen,.K.Y.,.Sun,.Z.,.and.Tseung,.A.C.C.,.Preparation.and.characterization.of.high-per-formance.Pt-Ru/WO3

-C.anode.catalysts.for.the.oxidation.of.impure.hydrogen,.Electro-chem Solid-State Lett.,.3,.10,.2000.

57 Levy, R.B and Boudart, M., Platinum-like behavior of tungsten carbide in surface.

catalysis,.Science,.181,.547,.1973.

Trang 21

58 Colton,.R.J.,.Huang,.J.J.,.and.Rabalais,.J.W.,.Electronic.structure.of.tungsten.carbide.

and.its.catalytic.behavior,.Chem Phys Lett.,.34,.337,.1975.

59 Yang, X.G and Wang, C.Y., Nanostructured tungsten carbide catalysts for polymer.

electrolyte.fuel.cells,.Appl Phys Lett.,.86,.224104,.2005.

H 2/CO.as.fuel.gas,.J Electrochem Soc.,.143,.3838,.1996.

66 Springer, T.E et al., Model for polymer electrolyte fuel cell operation on reformate.

feed:.effects.of.CO,.H2.dilution,.and.high.fuel.utilization,.J Electrochem Soc.,.148,.

71 Ruth, K., Vogt, M., and Zuber, R., Development of CO-tolerant catalysts, in

Hand-book of Fuel Cells: Fundamentals, Technology, and Applications,.1st.ed.,.Vielstich,.

Trang 22

84 Antoine, O and Durand, R., RRDE study of oxygen reduction on Pt nanoparticles.

inside.Nafion ® :.H2O2.production.in.PEMFC.cathode.conditions,.J Appl Electrochem.,.

30,.839,.2000.

85 Pianca,.M et.al.,.End.groups.in.fluoropolymers,.J Fluorine Chem.,.95,.71,.1999.

86 Curtin,.D.E et.al.,.Advanced.materials.for.improved.PEMFC.performance.and.life,.in.

8th Grove Fuel Cell Symposium,.London,.September.24–26,.2003,.PGR12.

87 Du,.B.,.DDP.960.Pulsed Air Bleed for Improved Fuel Cell Performance,.Plug.Power.

95 Staudt, R., Boyer, J., and Elter, J.F., Development, design, and performance of high.

temperature.fuel.cell.technology,.in.Extended Abstracts for 2005 Fuel Cell Seminar,.

Nørskov,.J.K et.al.,.Origin.of.the.overpotential.for.oxygen.reduction.at.a.fuel-cell.cath-ode,.J Phys Chem B,.108,.17886,.2004.

.100 Thompsett, D., Pt alloys as oxygen reduction catalysts, in Handbook of Fuel Cells:

Fundamentals, Technology, and Applications,.1st.ed.,.Vielstich,.W.,.Lamm,.A.,.and.

Gasteiger,.H.A.,.Eds.,.John.Wiley.&.Sons,.West.Sussex,.England,.2003,.p 467.

101 Kitchin,.J.R et.al.,.Modification.of.the.surface.electronic.and.chemical.properties.of.

Pt(111).by.subsurface.3d.transition.metals,.J Chem Phys.,.120,.10240,.2004.

Trang 23

.102

Zhang,.J et.al.,.Platinum.monolayer.on.nonnoble.metal-noble.metal.core-shell.nanopar-ticle.electrocatalysts.for.O2.reduction,.J Phys Chem B,.109,.22701,.2005.

.103 Stamenkovic, V.R et al., Improved oxygen reduction activity on Pt3Ni(111) via.

Wang,.Y and.Balbuena,.P.B.,.Design.of.oxygen.reduction.bimetallic.catalysts:.ab-ini-tio-derived.thermodynamic.guidelines,.J Phys Chem B,.109,.18902,.2005.

107 Balbuena, P.B et al., Theoretical analysis of oxygen adsorption on Pt-based clusters.

alloyed.with.Co,.Ni,.or.Cr.embedded.in.a.Pt.matrix,.J Phys Chem B,.107,.13671,.2003.

Trang 24

.123 Gouérec, P., Savy, M., and Riga, J., Oxygen reduction in acidic media catalyzed by.

pyrolyzed cobalt macrocycles dispersed on an active carbon: the importance of the.

surface.area.carbon.black,.J Electroanal Chem.,.535,.113,.2002.

.138 Wei, G., Wainright, J.S., and Savinell, R.F., Catalytic activity for oxygen reduction.

reaction.of.catalysts.consisting.of.carbon,.nitrogen.and.cobalt,.J New Mater

Trang 25

143 Ishihara, A et al., Tantalum oxynitride for a novel cathode of PEFC, Electrochem

Solid-State Lett.,.8,.A201,.2005.

.144 Liu,.Y et.al.,.Zirconium.oxide.for.PEFC.cathodes,.Electrochem Solid-State Lett.,.8,.

.154 O’Hayre, R., Barnett, D.M., and Prinz, F.B., The triple phase boundary, J

Electro-chem Soc.,.152,.A439,.2005.

Electro-chem Soc.,.152,.A2309,.2005.

161 Reiser, C.A et al., A reverse-current decay mechanism for fuel cells, Electrochem

Solid-State Lett.,.8,.A273,.2005.

.164 Qi, Z et al., Investigation of PEM fuel cell cathode carbon corrosion under

differ-ent.conditions,.in.Extended Abstracts of 2005 Fuel Cell Seminar,.Palm.Springs,.CA,.

November.13–18,.2005.

.165 Ye,.S et.al.,.Degradation.resistant.cathodes.in.polymer.electrolyte.membrane.fuel.cells,.

ECS Trans.,.3,.657,.2006,.p 138.

Trang 26

.166 Yu, P.T et al., The effect of air purge on the degradation of PEM fuel cells during.

startup.and.shutdown.procedures,.in.Proceedings of the AIChE 2004 Spring National

caused.by.localized.fuel.starvation,.Electrochem Solid-State Lett.,.9,.A183,.2006.

177 Kinoshita,.K.,.Carbon: Electrochemical and Physiochemical Properties,.John.Wiley.

&.Sons,.New.York,.1988.

178 Tada, T., High dispersion catalysts including novel carbon supports, in Handbook

of Fuel Cells: Fundamentals, Technology, and Applications, 1st ed., Vielstich, W.,.

Lamm,.A.,.and.Gasteiger,.H.A.,.Eds.,.John.Wiley.&.Sons,.West.Sussex,.England,.2003,.

p 481.

179 Waje,.M.M et.al.,.Durability.investigation.of.cup-stacked.carbon.nanotubes.supported.

Pt.as.PEMFC.catalyst,.ECS Trans.,.3,.677,.2006.

.180 Qi, Z and Pickup, P.G., Novel supported catalysts: platinum and platinum oxide.

nanoparticles dispersed on polypyrrole/polystyrenesulfonate particles, Chem

Easton,.E.B et.al.,.Chemical.modification.of.proton.exchange.membrane.fuel.cell.cata-lysts.with.a.sulfonated.silane,.Electrochem Solid-State Lett.,.4,.A59,.2001.

.184 Xu, Z., Qi, Z., and Kaufman, A., Advanced fuel cell catalysts, Electrochem

Solid-State Lett.,.6,.A171,.2003.

Au.nanoparticle.catalysts,.J Electrochem Soc.,.153,.A1702,.2006.

.188 Trivedi,.D.C.,.Polyanilines,.in.Handbook of Organic Conductive Molecules and

Poly-mers,.Nalwa,.H.S.,.Eds.,.John.Wiley.&.Sons,.Chichester,.U.K.,.1997,.p 505.

189 Andreev,.V.N.,.Belova,.N.N.,.and.Timofeev,.S.V.,.Redox.conversions.of.polyaniline.in.

composite.polyaniline-Nafion.polymer.films,.Russ J Electrochem.,.39,.419,.2003.

Trang 28

patterning.PEM.fuel.cell.membranes,.J Power Sources,.123,.172,.2003.

.225 Roziere, J and Jones, D.J., Non-fluorinated polymer materials for proton exchange.

membrane.fuel.cells,.Ann Rev Mater Res.,.33,.503,.2003.

.226 Eisenberg,.A and.Yeager,.H.L.,.Eds.,.Perfluorinated Ionomer Membranes,.American.

Chemical.Society,.Washington,.DC,.1982.

.227 Heitner-Wirguin,.C.,.Recent.advances.in.perfluorinated.ionomer.membranes:.structure,.

properties.and.applications,.J Membr Sci.,.120,.1,.1996.

.228 Doyle,.M and.Rajendran,.G.,.Perfluorinated.membranes,.in.Handbook of Fuel Cells:

Fundamentals, Technology, and Applications,.1st.ed.,.Vielstich,.W.,.Lamm,.A.,.and.

Trang 29

.240 Nakao, M and Yoshitake, M., Composite perfluorinated membranes, in Handbook

of Fuel Cells: Fundamentals, Technology, and Applications, 1st ed., Vielstich, W.,.

the Electrochemical Society,.Cancun,.Mexico,.October.29–November.3,.2006.

.245 Jones, D.J and Rozière, J., Inorganic/organic composite membranes, in Handbook

of Fuel Cells: Fundamentals, Technology, and Applications, 1st ed., Vielstich, W.,.

Lamm,.A.,.and.Gasteiger,.H.A.,.Eds.,.John.Wiley.&.Sons,.West.Sussex,.England,.2003,.

p 447.

.246

Lin,.J.-C.,.Kunz,.H.R.,.and.Fenton,.J.M.,.Membrane/electrode.additives.for.low-humid-ification.operation,.in.Handbook of Fuel Cells: Fundamentals, Technology, and

Appli-cations, 1st ed., Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., John Wiley &.

Sons,.West.Sussex,.England,.2003,.p 456.

.247 Florja ńczyk,.Z.,.Wielgus-Barry,.E.,.and.Połtarzewski,.Z.,.Radiation-modified.Nafion.

membranes.for.methanol.fuel.cells,.Solid State Ionics,.145,.119,.2001.

.248 DesMarteau,.D.D.,.Novel.perfluorinated.ionomers.and.ionenes,.J Fluorine Chem.,.72,.

high.temperature.and.low.humidity.conditions,.in.Extended Abstracts of 2006 Fuel

Cell Seminar,.Honolulu,.HI,.November.13–18,.2006,.p 284.

Trang 30

261 Baradie, B., Dodelet, J.P., and Guay, D., Hybrid Nafion ® -inorganic membrane with.

potential.applications.for.polymer.electrolyte.fuel.cells,.J Electroanal Chem.,.489,.

101,.2000.

.262 Wang,.H et.al.,.Nafion-bifunctional.silica.composite.proton.conductive.membranes,.J

Mater Chem.,.12,.834,.2002.

.263 Savadogo, O., Surface chemistry and electrocatalytic activity of the HER on nickel.

modified.with.heteropolyacids,.J Electrochem Soc.,.139,.1082,.1992.

Ngày đăng: 12/08/2014, 03:20

🧩 Sản phẩm bạn có thể quan tâm