No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]
Trang 1Introduction to Electromagnetic Fields,
to supplement “Elements of Engineering
Electromagnetics, Sixth Edition”
by
Nannapaneni Narayana Rao
Edward C Jordan Professor of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
Trang 2Faraday’s Law and
Ampère’s Circuital Law
Trang 3Maxwell’s Equations in Differential Form
Why differential form?
Because for integral forms to be useful, an a priori knowledge of the behavior of the field to be
computed is necessary
The problem is similar to the following:
There is no unique solution to this
If y(x) dx 2, what is y(x)?01
Trang 4However, if, e.g., y(x) = Cx, then we can find y(x),
since then
On the other hand, suppose we have the following problem:
Then y(x) = 2x + C.
Thus the solution is unique to within a constant
Cx dx 2 or C x2
2
01
10 2 or C 4
y(x) 4x.
If dy
dx 2, what is y?
Trang 5FARADAY’S LAW
First consider the special case
and apply the integral form to the rectangular path shown, in the limit that the rectangle shrinks to a point
E E x (z,t) a x and H H y (z,t) a y
(x, z)
z (x, z + z)
x
(x + x, z) (x + x, z + z)
z y
Trang 6dt
E x z z x E x z x d B y x z, x z
dt
0
0
Lim x z z x z
x
z
x z
0 0
Lim y x z
x z
d
dt B x z
x z
y
E
Trang 7General Case
E E x (x, y, z,t)a x E y (x, y, z,t)a y E z (x, y,z,t)a z
H H x (x, y, z,t)a x H y (x, y, z,t)a y H z (x, y, z,t)a z
E z
y –
E y
B x
t
E x
z –
E z
B y
t
E y
E x
B z
t
Lateral space derivatives of the
components of E
Time derivatives of
the components of B
Trang 8ax ay az
x
y
z
E x E y E z
– B
t
E – B
t
Differential form
of Faraday’s Law
ax
x ay
y az
z
Del Cross E or Curl of E = – B
t
Trang 9AMPÈRE’S CIRCUITAL LAW
Consider the general case first Then noting that
we obtain from analogy,
E –
t (B)
E • dl – d
dt S B • dS
C
H • dl J • dS ddt D • dSS S C
H J t(D)
Trang 10Special case:
H J
t of Ampère’s circuital law
E E x (z,t)a x , H H y (z,t)a y
ax a y az
z
J D
t
– H y
z J x
D x
t
Trang 11 8
0 cos 6 10 y
H y
z – J x –
D x
t
Ex For
in free space
find the value(s) of k such that E satisfies both
of Maxwell’s curl equations.
Noting that E E y (z,t)a y,we have from
E – B
t ,
0, J = 00, ,
Trang 12
8 0
8 0
y
B
z
B
t – E – 0 0
z
0
Trang 13Then, noting that we have fromH H x (z,t)a x ,
H D
t ,
8
0 8
7 0
8
0 2
cos 6 10
6 10
4 10
cos 6 10 240
x
x
H
a
Trang 140 0
x
H
a a a
D × H
2
8
0
2 sin 6 10 240
y H x
D
Trang 15
2
8
0
3 8 cos 6 10
y
k E
2
8
0
9 0
2
8
0 2
10 36 cos 6 10
E
a
Trang 16 8
k 2
3 108(c) m s.
Comparing with the original given E, we have
2 0
4
k E E
Sinusoidal traveling waves in free space, propagating in the
z directions with velocity,