1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 2 1 TRƯỜNG ĐIỆN TỪ

10 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề The Line Integral
Tác giả Nannapaneni Narayana Rao, Edward C. Jordan
Người hướng dẫn Distinguished Amrita Professor of Engineering
Trường học University of Illinois at Urbana-Champaign
Chuyên ngành Electrical and Computer Engineering
Thể loại Slide Presentations
Thành phố Urbana
Định dạng
Số trang 10
Dung lượng 156 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

Slide Presentations for ECE 329,

Introduction to Electromagnetic Fields,

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

The Line Integral

Trang 3

1 2

A l1

l2

B

The Line Integral

Work done in carrying a charge from A to B in an

electric field:

j1 n

Trang 4

 WAB q E j • l j

j1

n

VAB  WAB

n

 (Voltage between

A and B)

 cos  

cos

qE l q

E  l

Trang 5

In the limit , n  

V AB A B E • dl

= Line integral of E

from A to B.

E • dl

C

= Line integral of E

around the closed

path C.

Trang 6

L

If E • dl = 0 ,C

then AB E • dl

is independent of

the path from A to B

(conservative field)

E • dl

ARBLA

ARB E • dl – ALB E • dl 0

E • dl

ARB

Trang 7

(1, 0, 0)

z

x

y

(1, 2, 3)

(1, 2, 0) (0, 0, 0)

Ex For find F  yza x  zxa y  xya z ,

F • dl

(1,2,3) along the straight line paths (0, 0, 0) from (0, 0, 0) to (1, 0, 0), from (1, 0, 0) to (1, 2, 0) and then from (1, 2, 0) to (1, 2, 3)

Trang 8

From (0, 0, 0) to (1, 0, 0),

From (1, 0, 0) to (1, 2, 0),

y z 0 ; dy dz 0

(0,0,0)

(1,0,0)

x 1, z 0 ; dx dz 0

F  ya z

(1,0,0) (1,2,0)

Trang 9

From (1, 2, 0) to (1, 2, 3),

x 1, y 2 ; dx dy0

F 2za x  za y  2az , dl dz a z

(1,2,0)

(1,2,3)

(0,0,0)

(1,2,3)

Trang 10

In fact ,  

 

d yz zx xy

dx dy dz

yz dx zx dy xy dz

d xyz

 

 

 

 

    

0,0,0

1 2 3 0 0 0

6, independent of the path.

     

Ngày đăng: 12/04/2023, 21:00