1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 2 TRƯỜNG ĐIỆN TỪ

12 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Gauss’ Laws and the Continuity Equation
Tác giả Nannapaneni Narayana Rao
Người hướng dẫn Edward C. Jordan, Professor of Electrical and Computer Engineering
Trường học University of Illinois at Urbana-Champaign
Chuyên ngành Electrical and Computer Engineering
Thể loại Slide Presentations
Thành phố Urbana
Định dạng
Số trang 12
Dung lượng 272 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

Introduction to Electromagnetic Fields,

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by

Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

3.2 Gauss’ Laws and the Continuity Equation

Trang 3

GAUSS’ LAW FOR THE ELECTRIC FIELD

D • dS 

S

z

(x, y, z) y

x

z

y x

x x x x x

y y y y y

z z z z z

x y z

   

Trang 4

0

0

Lim

x

y

z

x y z

x y z

 

 

 

  

  

 

0

0

0

Lim

x x x x x

y y y y y

z z z z z x

y

z

x y z





 

 

 

  

Trang 5

D x

x

D y

y

D z

z

Longitudinal derivatives

of the components of D

  

 • D 

Divergence of D =

Ex Given that

Find D everywhere.

  0 for – a  x  a

0 otherwise







Trang 6

Noting that  = (x) and hence D = D(x), we set

y  0 and

z  0, so that

 • D D x

x

D y

y

D z

z

D x

x

0

x=–a x=0 x=a

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Trang 7

which also means that D has only an

x-component Proceeding further, we have

where C is the constant of integration

Evaluating the integral graphically, we have the following:

 • D =  gives

D x

x (x)

D x – x  xdx  C

Trang 8

–a 0 a x

 0

(x) dx

– 

x

2 0a

From symmetry considerations, the fields on the two sides of the charge distribution must

be equal in magnitude and opposite in

direction Hence,

C = – 0a

Trang 9

– 0a

D 

–0a a x for x  –a

0x a x for – a  x  a

0a a x for x  a











Trang 10

B • dS = 0 = 0 dvV

S

• B 0

GAUSS’ LAW FOR THE MAGNETIC FIELD

From analogy

Solenoidal property of magnetic field lines Provides test for physical realizability of a given vector field as a magnetic field.

D • dS =V dv

S

• D 

 • B 0

Trang 11

LAW OF CONSERVATION OF CHARGE

J • dS  ddtV dv 0

S

• J  t( ) 0

aaaa

• J  t 0

 ContinuityEquation

Trang 12

(4) is, however, not independent of (1), and (3) can be derived from (2) with the aid of (5).

 E –B

t

 H J D

t

 • D 

 • B 0

(1)

(2) (3) (4) (5)

 • J  

t 0

Ngày đăng: 12/04/2023, 21:01

TỪ KHÓA LIÊN QUAN