1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 6 TRƯỜNG ĐIỆN TỪ

11 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Polarization of Sinusoidally Time-Varying Fields
Tác giả Nannapaneni Narayana Rao, Edward C. Jordan
Người hướng dẫn Distinguished Amrita Professor of Engineering
Trường học University of Illinois at Urbana-Champaign
Chuyên ngành Electrical and Computer Engineering
Thể loại Slide Presentations
Thành phố Urbana
Định dạng
Số trang 11
Dung lượng 225 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Trang 1

to supplement “Elements of Engineering

Electromagnetics, Sixth Edition”

by

Nannapaneni Narayana Rao

Edward C Jordan Professor of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

Trang 2

3.6 Polarization of Sinusoidally

Time-Varying Fields

Trang 3

Polarization is the characteristic which describes how the position of the tip of the vector varies with time

Linear Polarization:

Tip of the vector describes a line

Circular Polarization:

Tip of the vector describes a circle

Trang 4

Elliptical Polarization:

Tip of the vector describes an ellipse

(i) Linear Polarization

Linearly polarized in the x direction.



F1 F1cos ( at ) x

Direction remains

along the x axis

 Magnitude varies sinusoidally with time

Trang 5

F2 F2cos ( at ) y

Direction remains

along the y axis

Magnitude varies sinusoidally with time

Linearly polarized in the y direction.

If two (or more) component linearly polarized vectors are in phase, (or in phase opposition), then their sum vector is also linearly polarized.

Ex: F F1 cos (t ) ax  F2 cos (t ) ay

Trang 6

(ii) Circular Polarization

If two component linearly polarized vectors are

(b) differ in direction by 90˚

then their sum vector is circularly polarized

 tan–1 F2 cos (t  )

F1 cos (t  )

tan–1 F2

F1

constant

y

x

F1

Trang 7

   

1

1 1 1 1

, constant

sin tan

cos tan tan

F

F

1

F

2

F

F

x y

Trang 8

(iii) Elliptical Polarization

In the general case in which either of (i) or (ii) is not satisfied, then the sum of the two component

linearly polarized vectors is an elliptically polarized vector.

Ex: F  F1 cos t a x  F2 sin t a y

1

F

2

F

F

x y

Trang 9

–F0

–F0

F0

F0

F1

/4

y

Trang 10

D3.17

F1 and F2 are equal in amplitude (= F0 ) and differ in

direction by 90˚ The phase difference (say  ) depends

on z in the manner –2z – (–3z) = z.

(a) At (3, 4, 0),  = (0) = 0.

(b) At (3, –2, 0.5),  = (0.5) = 0.5 .

8

8

x

y

F F1  2  is linearly polarized.

F F1  2 is circularly polarized

Trang 11

(c) At (–2, 1, 1),  = (1) = .

(d) At (–1, –3, 0.2) =  = (0.2) = 0.2.

F F1  2  is linearly polarized.

F F1  2  is elliptically polarized

Ngày đăng: 12/04/2023, 21:01

TỪ KHÓA LIÊN QUAN