1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (780)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Không có tiệm cận.

B Không có tiệm cận ngang và có một tiệm cận đứng.

C Có một tiệm cận ngang và một tiệm cận đứng .

D Có một tiệm cận ngang và không có tiệm cận đứng.

Câu 2 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

a

√ 3

√ 2

2 .

Câu 3 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; −2) B I(0; −1; 2) C I(0; 1; 2) D I(1; 1; 2).

Câu 5 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 6 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A −1

2

1

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(0; 2; 3) B A(0; 0; 3) C A(1; 2; 0) D A(1; 0; 3).

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A Không tồn tại m B m < 1

3. C m < 0. D 0 < m <

1

3.

Câu 9 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và

y= 0 quanh trục Ox bằng

A. 16

16π

16

16π

9 .

Câu 10 Cho hàm số y = f (x) có đạo hàm f′

(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 11 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

A. 5

√ 2

Câu 12 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

3

Trang 2

Câu 13 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= −1

(x)= 2

x2

Câu 14 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 15 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 7

1

1

Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; 2; −3) B (1; −2; 3) C (−1; −2; −3) D (−1; 2; 3).

Câu 17 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z là số thuần ảo B z= 1

Câu 18 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 19 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −21008+ 1 B −21008 C 21008 D −22016

Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 22 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 23 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗

Hỏi đâu là phương án đúng?

Câu 24 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 25 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 26 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x+ 2y + z − 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x − 2y+ z + 4 = 0 D 3x − 2y+ z − 4 = 0

Trang 3

Câu 27 Biết

1

R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

Câu 28 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x)= e2x B F(x)= ex +1. C F(x) = ex D F(x)= ex+ 1

Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng

qua I, song song với mặt phẳng (ABC) có phương trình là:

A z − 1= 0 B x+ y + z − 3 = 0 C x − 1 = 0 D y − 1= 0

Câu 30 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

2

√ 2x+ 1 + C

C.R f(x)dx= √ 1

R

f(x)dx= 2√2x+ 1 + C

Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (3; 1; 4) B (−3; −1; −4) C (3; −1; −4) D (−3; −1; 4).

Câu 32 Tích phânR01e−x dx bằng

1

e −1

e .

Câu 33 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 34 Cho số phức z thỏa mãn1 −

√ 5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B 3 < |z| < 5 C. 1

2 < |z| < 2 D. 5

2 < |z| < 4

Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 2

√ 5

√ 6

2 .

Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là một số thực không dương.

Câu 37 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 38 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 39 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Câu 40 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Trang 4

Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −3 ≤ m ≤ 0 B m > −2 C −4 ≤ m ≤ −1 D m < 0.

Câu 44 Tính đạo hàm của hàm số y= log4

x2− 1

A y′ = √ 1

x2− 1 ln 4

2(x2− 1) ln 4. C y

(x2− 1) ln 4. D y

(x2− 1)log4e.

Câu 45 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= x3− 3x2

C y= −2x4+ 4x2 D y= −x4+ 2x2

Câu 47 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 1 hoặc m < −1

3 B m > 2 hoặc m < −1 C m < −2. D m > 1.

Câu 48 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

64.

Câu 49 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 50 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

A P = 2 + 2(ln a)2

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:54