1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (780)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 122,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(1; 1; 2).

Câu 3 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 4 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4; 2]S[22;+∞) D (7

4;+∞)

Câu 5 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= −x4+ 2x2+ 1 B y = −x4+ 1 C y= x4+ 1 D y= x4+ 2x2+ 1

Câu 6 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

√ 3

√ 3

2)

Câu 7 Cho hình hộp chữ nhật ABCD.A

B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

3

a√3

√ 2

2 .

Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. 4m

m2− 12

m2− 3

m2− 12

Câu 9 Phần ảo của số phức z= 2 − 3i là

Câu 10 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 11 Có bao nhiêu số nguyên x thỏa mãn log3x

343 < log7x2− 16

Câu 12 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16

16π

16

9 .

Trang 2

Câu 13 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = ln3

xln3.

Câu 14 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 15 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 16 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+

z2

= 2?

Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

29

29

11

13.

Câu 20 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 21 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 22 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

3 . D |z|= √34

Câu 24 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 25 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. C z là số thuần ảo. D |z|= 4

Câu 26 Mệnh đề nào sau đây sai?

A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

C.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

D.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

Câu 27 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx = √ 1

R

f(x)dx= 2√2x+ 1 + C

C.R f(x)dx = 1

2

Trang 3

Câu 28 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x.

A F(x)= −1

2cos2x. B F(x)= −cos2x C F(x) = −cos2x D F(x)= sin2x

Câu 29 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A x+ y − z + 1 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x − y + z + 6 = 0.

Câu 30 ChoRa3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

1

2).

Câu 31 Tính tích phân I = R 2

1 xexdx

Câu 32 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (3; −1; −4) B (−3; −1; 4) C (−3; −1; −4) D (3; 1; 4).

Câu 33 Biết

1

R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

A ab= 5

Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 35 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

4;

5

4

!

4

!

4;+∞

!

2;

9 4

!

Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

3

2 < |z| < 2 C. 1

2 < |z| < 3

2. D 2 < |z| <

5

2.

Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 2 B |w|min= 1 C |w|min = 3

2. D |w|min = 1

2.

Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Trang 4

Câu 42 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 43 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

a

√ 15

3a√30

3a√6

Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax > ay

⇔ x< y B Nếu a > 1 thì ax > ay

⇔ x> y

C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a < 1 thì ax > ay ⇔ x< y

Câu 46 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

128.

Câu 47 Cho bất phương trình 3

A Bất phương trình vô nghiệm.

B Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

C Bất phương trình đúng với mọi x ∈ [ 1; 3].

D Bất phương trình đúng với mọi x ∈ (4;+∞)

Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= −2x4+ 4x2 C y= −x4+ 2x2 D y= x3− 3x2

Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

12.

Câu 50 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

4ln 2+ 3π

1

5ln 2+ 6π

5 .

Trang 5

HẾT

Ngày đăng: 11/04/2023, 15:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN