1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (780)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biể[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 2 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A.

2.a2

π√2.a2

π√3.a2

√ 3.a2

Câu 3 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2+ 1

1

1

1

2 − ln 2.

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(5; 9; 5) B C(3; 7; 4) C C(1; 5; 3) D C(−3; 1; 1).

Câu 5 Tìm nghiệm của phương trình 2x = (√3)x

Câu 6 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

√ 15

a√5

3 .

Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

2

1

6.

Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 9 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 1

5

1

4

3.

Câu 10 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

A. 8

Câu 11 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 12 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= 1

′(x)= −1

x2 D F′(x)= 2

x2

Trang 2

Câu 13 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 14 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 15 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x) bằng

A. 3

3

Câu 16 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.

C Phần thực là−3 và phần ảo là −2i D Phần thực là 3 và phần ảo là 2i.

Câu 18 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 34 C |z|= 5

√ 34

√ 34

3 .

Câu 19 Những số nào sau đây vừa là số thực và vừa là số ảo?

A C.Truehỉ có số 0 B Không có số nào C Chỉ có số 1 D 0 và 1.

Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 22 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 23 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z+ z = 2bi B |z2|= |z|2 C z · z= a2− b2 D z − z= 2a

Câu 24 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

11

29

29

13.

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Biết

1

R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

Câu 27 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 28 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R05

1+ f (x).

A I = 5

4.

Trang 3

Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

A x − 2y+ 2z + 15 = 0 B x − 2y+ 2z − 15 = 0

Câu 30 Tính tích phân I = R12xexdx

Câu 31 Hàm số f (x) thoả mãn f

(x)= xx

là:

A (x − 1)x+ C B x2 x+ C C x2+ x+1

x+ 1 + C. D (x+ 1)x+ C.

Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A 2x + y − z − 4 = 0 B −2x + y − z + 1 = 0 C −2x + y − z − 4 = 0 D −2x + y − z + 4 = 0.

Câu 33 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x

A F(x)= −cos2x B F(x)= −cos2x C F(x) = −1

2cos2x. D F(x)= sin2x

Câu 34 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 38 Cho số phức z thỏa mãn1 −

√ 5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B. 1

2 < |z| < 2 C 3 < |z| < 5 D. 5

2 < |z| < 4

Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 40 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 41 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 4 B |z|= 1

Câu 43 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A = 2a Tính thể tích khối chóp S.ABCD

Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

5

a3√ 15

a3√ 15

a3√ 15

Trang 4

Câu 45 Cho m= log23; n= log52 Tính log22250 theo m, n.

A log22250= 2mn+ n + 2

C log22250= 2mn+ 2n + 3

Câu 46 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. a

15

3a√6

3a√30

3a√6

Câu 48 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 50 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:38

TỪ KHÓA LIÊN QUAN