1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (620)

5 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 126,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A ∀m ∈ R B m < 3

2. C −4 < m < 1. D 1 < m , 4.

Câu 2 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= x4+ 3x2+ 2

Câu 3 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

3 .

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

A x= 5 + 2ty = 5 + tz = 2 − 4t B x= 5 + 2ty = 5 + tz = 2

Câu 5 Hàm số nào sau đây không có cực trị?

Câu 6 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a

Câu 7 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

Câu 8 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < 1 thì y < −3 B Nếu 0 < x < π thì y > 1 − 4π2

C Nếux > 2 thìy < −15 D Nếux= 1 thì y = −3

Câu 9 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

B′C′

A. a

3√

2

a3√2

a3

a3

2.

Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 11 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Trang 2

Câu 12 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (−∞; 3).

C Hàm số đã cho đồng biến trên khoảng (1; 4).

D Hàm số đã cho nghịch biến trên khoảng (3;+∞)

Câu 13 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 7; 3, 9)· B (3, 5; 3, 7)· C (3, 3; 3, 5)· D (3, 1; 3, 3)·.

Câu 14 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

A. a

3

2a3

Câu 15 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn

3y−2x≥ log5(x+ y2)?

Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 18 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 20 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 21 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Chỉ có số 1 C Không có số nào D C.Truehỉ có số 0.

Câu 22 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z.

Câu 23 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là 3 và phần ảo là 2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là−3 và phần ảo là −2i D Phần thực là3 và phần ảo là 2.

Câu 24 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

11

11

29

13.

Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (−3; −1; 4) B (−3; −1; −4) C (3; 1; 4) D (3; −1; −4).

Trang 3

Câu 27 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e.

A F(x)= e2x B F(x)= ex C F(x) = ex+ 1 D F(x)= ex +1.

Câu 28 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

A I = 5

2.

Câu 29 Tìm nguyên hàm I = R xcosxdx

2 + C

C I = x2cosx

Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)

A M(−2; 1; −8) B P(3; 1; 3) C Q(1; 2; −5) D N(4; 2; 1).

Câu 31 Hàm số f (x) thoả mãn f′(x)= xxlà:

A (x − 1)x+ C B x2 x+ C C x2+ x+1

x+ 1 + C. D (x+ 1)x+ C.

Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A 2x + y − z − 4 = 0 B −2x + y − z + 4 = 0 C −2x + y − z − 4 = 0 D −2x + y − z + 1 = 0.

Câu 33 Họ nguyên hàm của hàm số f (x)= cosx + sinx là

A F(x)= sinx + cosx + C B F(x)= −sinx + cosx + C

C F(x)= −sinx − cosx + C D F(x)= sinx − cosx + C

Câu 34 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 36 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1

+ 1

z2

= 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. 3

2

2

Câu 37 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1

Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 39 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Trang 4

Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 42 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 3

√ 6

√ 2

√ 2

√ 5

5 .

Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 44 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

2(x2− 1) ln 4. B y

(x2− 1) ln 4. C y

(x2− 1)log4e. D y

x2− 1 ln 4.

Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 48 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

32.

Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ 2n + 3

C log22250= 2mn+ n + 3

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:19

TỪ KHÓA LIÊN QUAN

w